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1.0 INTRODUCTION
1.1 Significance of the Problem

Advanced, high performance composite materials are really material systems. The consti-
tuent materials interact in such a way that their collective response is more than the linear sum of
the response of the constituents. This simple reality provides the technical community with a
remarkable opportunity to create composite material systems which are uniquely suited to per-
form specific engineering tasks. At the same time, this systems aspect of composite materials is
a very great challenge to the research community. It introduces complexity, nonlinearity, and
scaling problems (to name a few) which require new developments to represent geometry and

material behavior, from the standpoint of mechanics.

This challenge is even more formidable when one attempts to find modeling approaches to
the representation of the long-term response of composite systems to cyclic mechanical, chemi-
cal, and thermal loading. The systems aspect in that context creates the need to represent defor-
mation, degradation, aging, and other processes. These process are "multidisciplinary” in every
sense, and the mechanics, chemistry, thermodynamics, and physics of their activity is generally
coupled.

The "performance” of a material system is not a material property like stiffness. It depends
on the manner in which the environment of mechanical, chemical, and thermal loads are applied,
and on the history of that application. The physical events that determine performance are often
a "process,” with rates and interactions that must be considered and characterized in order to
properly describe and anticipate the consequences.

Recent advances in the technologies of manufacturing and materials have enhanced the
current application of composite materials from being used as secondary structural elements to
becoming primary load-carrying structural components. Consequently thicker and thicker com-
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1-2

posites structures are being made to carry higher loads. Due to the inherent inhomogeneity and
anisotropy of the materials, analysis of these composite structures imposes new challenges to
engineers. A widespread and efficient application of composite materials requires detailed and
reliable knowledge of their physical properties and, in turn, of their behavior under applied
loads. There are a number of important technical problems associated with the mechanics of
composite materials. One such problem is the effect of discontinuities (holes and notches) on
the strength of composite laminates. This issue is critical for the determination of the load bear-
ing capacity of composite laminates; which is directly applicable to the design of composite
panels and the location of fastener holes. Indeed, the manufacture and repair of advanced com-
posite structures have serious problems connected with the placement of fastener holes. This is
especially relevant to composite panel repair, both in the field and at the repair facility. At the
present time all depots are confronted with these problems. The lack of appropriate data has
resulted in new and in-service designs which are often unnecessarily conservative and expensive
(both in cost and turn-around-time). Another related problem is the issue of interlaminar
response of composite materials which is directly related to delamination and edge effects in
composites. In recent time, delamination has become the most feared failure mode in laminated
composite structures. It can exhibit unstable crack growth, and while delamination failure itself
is not usually a catastrophic event, it can perpetrate such a condition due to its weakening
influence on a component in its resistance to subsequent failure modes. Study of delamination is
one of the prominent topics in composite mechanics rescarch. Another issue in the engineering
application of composite materials is the modeling and study of structures with curved
geometries. Because of the complex nature of these structures, present computational capabili-
ties are far behind the engineering developments and only very limited simulations of these sys-
tems are feasible presently. All the foregoing problems share one common deficiency, namely,
the lack of an adequate and sound theory predicated upon principles of continuum mechanics
that could be implemented through an accurate and efficient numerical scheme. Here in Berke-

ley Applied Science and Engineering Inc. (BASE) we started this research to address these very
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basic issues associated with application of composites. In particular the following objectives

were followed during the course of this research.

1. Development of a thermomechanical theory for composite laminates that has a continuum
character. The theory should be able to account for the three-dimensional responses of
laminated plates and shells. The theory should also account for effects of micro-structure,

anisotropy, and geometric nonlinearities.

2. Formulation of the theory in the context of finite element and numerical implementation of
the theory through computationally efficient algorithms suitable for composite applications.

3. Verification of the theory through analysis of a series of benchmark problems.

1.2 Theories of Laminated Composite Plates and Shells

There has been an increasing amount of research activity pertaining to the mechanics of
composite laminates and multilayered plate and shell theories. The scope of multilayered shell
theories encompasses all the methods used in conjunction with two-dimensional treatments of
composite shells. These methods generally lead to a system of partial differential equations in
two independent spatial variables, along with a set of boundary/initial conditions compatible
with them. As in the case of single-layer isotropic shells, all the different approaches for con-
structing multilayered shell theories can be viewed as cither a single approximation or succes-
sive approximations of three-dimensional elasticity models. For a review and a complete list of
references, the reader is referred to Noor, A. K., and Burton, W. S. [1990]. The following four
general approaches for constructing two-dimensional theories for multilayered shells were
identified in this work:

1. method of hypothesis;

2. method of expansion;
3. asymptotic integration technique;
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4. iterative methods and methods of successive corrections.

The first approach is an extension of the Kirchhoff-Love approach and is based on intro-
ducing a priori plausible kinematic or static assumptions regarding the variation of displace-
ments, strains and/or stresses in the thickness direction. The simples of these hypotheses is the
linear variation of the displacement components used in conjunction with first-order shear defor-
mation theories. Although the method of hypotheses has the advantages of physical clarity and
simplicity of applications, it has the drawback of not providing an estimate of the error in the
response predictions.

The second approach was initiated by Cauchy and Poisson around 1828, and is based on a
series expansion, in terms of the thickness coordinate for displacement and/or stresses. For iso-
tropic and anisotropic plates and shells, power series, Legendre polynomials, and trigonometric
functions have been employed. The second approach also includes the method of initial func-
tions in which the displacements and stresses are expanded in a Taylor series in the thickness
coordinate. The relations between the higher-order derivatives of each of the displacements and
stresses and their lower-order derivatives are obtained by successive differentiation of the three-

dimensional elasticity relations.

In the third approach, appropriate length scales are introduced in the three-dimensional
clasticity equations for the different response quantities, followed by parametric (asymptotic)
expansions of these quantities in power series in terms of a small thickness parameter. The
three-dimensional elasticity equations are thereby reduced to recursive sets of two-dimensional
equations, governing the interior and edge zone responses of the shell. The edge zone (or boun-
dary layer) is produced by self-equilibrated (in the thickness direction) boundary stresses. The
lowest-order system of two-dimensional equations, depending on the choice of the length scales,
corresponds to the thin-shell approximation. The higher-order systems introduce thickness
correction effects in a systematic and consistent manner. This approach was first applied to iso-

tropic shells by Reissner [1960]. Later, it was extended to anisotropic shells.
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The fourth approach includes various iterative approximations of the three-dimensional

elasticity equations, 2r- predictor-corrector procedures based on a single or successive correc-

tions of the two-dimensional equations.

The following comments on the different approaches of constructing two-dimensional shell

theories and the boundary conditions to be used in conjunction with these theories are in order:

(a)

)

The state of stress in the shell can be decomposed into an internal state of stress and a
boundary layer. The first is generated by external surface forces, and by boundary and
reactive stresses, which are not self-equilibrated. The boundary layer is generated by self-
equilibrated (in the thickness direction) boundary stresses. The method of hypotheses and
the method of expansion can describe well the internal state of stress, but are not suited for
describing the boundary layer (because of the complicated nature of the displacement
and/or stress distribution through the thickness). By contrast, the asymptotic integration
technique is well suited for describing both the internal state of stress and the boundary
layer of the shell.

If the method of expansion is contrasted with the asymptotic integration approach, the fol-

lowing two major differences can be identified:

No a priori assumptions are made regarding the relative magnitudes of the different stress
components in the method of expansion. By contrast, in the asymptotic integration

approach, such assumptions have to be made either explicitly or implicitly.

Whereas the method of expansion leads to a set of simultaneous equations in all the param-
eters, the asymptotic integration technique leads to recursive sets of equations for both the
interior and the edge zone (or boundary layer) of the shell. The lowest-order equations for
the interior of the shell correspond to the classical Kirchhoff-Love theory.
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3. The aforementioned four approaches are not mutually exclusive. Some of the theories
developed can be classified in more than one category. Also, hybrid methods, combining
more than one approach, have been proposed. Examples of these hybrid methods are: (a)
the use of a three-dimensional model for the core and a two-dimensional model for the fac-
ings of a sandwich shell, and (b) the two-step approach based on using a two-dimensional
shell theory to evaluate the in-plane stresses and then applying the three-dimensional
equilibrium equations to evaluate the transverse shear and normal stresses in laminated

composite shells.

4. Although most of the theories developed for laminated composite shells replace the actual
shell (or each of its layers) by a smeared ordinary continuum, some microstructural and
generalized continuum shell theories have been proposed. In the first class (microstructural
theories), the shell is considered to consist of alternating layers of relatively rigid material
(with properties representative of fibers) interspersed between flexible layers with proper-

ties typical of the matrix material.

5.  The derivation of the correct boundary conditions for a particular shear deformation shell
theory from prescribed data seems to be important, even for thin shells. Some recent work
on isotropic plates and shells indicated that the use of approximate boundary conditions in
conjunction with higher-order shell theories can lead to significant errors in the predictions
of the shell theory. Therefore, Saint Venant’s principle needs to be re-examined when

applied, in conjunction with higher-order shear deformation theories, to shell problems.

Extensive research effort has been devoted to the classical laminated theory (C.L.T.) in the
past and a huge amount of literature is available on this topic. The classical laminate theory is a
direct extension of classical plate theory in which the well known Kirchhoff-Love kinematic
hypothesis is enforced. This theory is adequate when the thickness (to side or radius ratio) is
small and anisotropy is not pronounced. The range of applicability of the C.L.T. solution has
been well established for laminated flat plates. It indicates that a theory which accounts for the
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transverse shear deformation effects would be adequate to predict only the gross behavior of the
laminate.

In order to overcome the deficiencies in C.L.T., refined laminate theories have been pro-
posed. These are single layer theories in which the transverse shear stresses are taken into
account. They provide improved global response estimates for deflections, vibration frequencies
and buckling loads of moderately thick composites when compared to the classical laminate
theory. A Mindlin type first-order transverse shear deformation theory (S.D.T.) was first
developed by Whitney and Pagano [1970] for multilayered anisotropic plates, and by Dong and
Tso [1972] for multilayered anisotropic shells. Both of these approaches (C.L.T. and S.D.T.)
considered all layers as one equivalent single anisotropic layer; thus these approaches are inade-
quate to model the warpage of cross-sections, that is, the distortion of the deformed normal due
to transverse shear stresses. Furthermore, the assumption of nondeformable normal results in
incompatible shearing stresses between every two adjacent layers. Also the later approach
requires the introduction of an arbitrary shear correction factor which is dependent on the lami-

nation parameters for obtaining accurate results.

The exact analyses performed by Pagano [1989] on the composite flat plates have indicated
that the distortion of the deformed normal is dependent not only on the laminate thickness, but
also on the orientation and the degree of orthotropy of the individual layers. Therefore the
hypothesis of nondeformable normals, while acceptable for isotropic plates and shells is often
quite unacceptable for multilayered anisotropic plates and shells with very large ratio of Young’s
modulus to shear modulus, even if they are relatively thin. Thus a transverse shear deformation
theory which also accounts for distortion of the deformed normal is required for accurate predic-

tion of the behavior of multilayered anisotropic plates and shells.

Along this line the work of M. Epstein and P. G. Glocker [1977,1979], P. M. Pinsky and K.
O. Kim [1986], and J. N. Reddy [1988, 1993] can be mentioned where the theory of multi-
director surfaces was used to model multi-layered plates and shells. Pinsky and Kim’s work was
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based on multi-layered shell theories of Epstein and Glockner where the concept of multi-
director field defined over one reference surface was employed for the description of the initial

geometry and motion of multi-layered shells.

Reddy proposed a displacement based, layerwise shear deformable, C? theory which also
accounts for the warping of the composite cross section. In his theory, there is a single reference
surface and a director is associated with this reference surface. The variable kinematic finite ele-
ment is developed by superimposing several types of assumed displacement fields within the
finite element domain. The underlying foundation of the displacement field is provided by the
assumed displace.uent field of any desired equivalent-single-layer theory and the layerwise dis-
placement field is included as an incremental enhancement to this underlying field. This work

has been reported for linear analysis and for flat geometry domain.

Unlike the equivalent single-layer theories, the layerwise theories assume separate dis-
placement field expansions within each material layer, thus providing a kinematically correct
representation of the strain field in discrete layer laminates and allowing accurate determination
of ply level stresses. During the course of this research, we developed a layerwise shear deform-
able, multi-director theory which directly address the technical drawbacks present in most of the
theories that have been proposed for composite analysis to date. The main features of the theory

are summarized as follows:

e  The displacement field proposed in this work is continuous in 3-D where as the rota-
tion field is layer-wise continuous (in 2-D) and can be discontinuous across the finite

clement layers through the thickness direction.

e The displacement field fulfills a priori the static and geometric continuity conditions

between contiguous layers.

e  The novel idea in the assumed displacement field lies in its capability to model the

distortion of the deformed normal, without increasing the number and order of the par-
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theory.

Another new idea in the theory is its 3-D feature, thereby modeling the interlaminar
conditions and predicting the 3-D edge effects more accurately.

A salient feature of the proposed theory is that, ar most, only first derivatives of dis-
placement and rotation fields appear in the variational equations. The practical
consequence of this fact is that only C° continuity of finite element functions is
required which is readily satisfied by the family of Lagrange elements.

The number of partial differential equations in the resulting system is independent of
the number of plies and their orientations in the composite.

Another advantage of the proposed composite shell theory lies in the greater flexibility
in the specification of the boundary conditions.

The theory covers a wide range in the sense that in one hxmt case when there is only
one layer of proposed elements through the thickness, one recovers the features of the
standard Shear Deformation Theories (S.D.T.). However the added advantage in the
present case lies in the 3-D feature of the theory which controls the variation in the
thickness via the Poisson terms rather than ad hoc mathematical tricks as done in the

literature.

In another limit case, one can model the composite with one element per ply through
the ¢ - - .te thickness, a procedure that is typically done while using the standard
3-D anisotropic elasticity elements. The added advantage of the proposed theory in
this limit case is that because of the shear deformation capability of the proposed ele-
ments, they model the warping of the deformed normal more accurately, thereby
improving the bending behavior.

From a practical design point of view it provides the engineer the freedom to deter-
mine the precision in analysis. If a general response of the composite structure is

required, the composite can be modeled with one element through the thickness. On
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the other hand, the designer can model the thickness with as many layers of the pro-
posed element as deemed necessary to achieve the required accaracy.

e  Furthermore, it is feasible to employ this formulation for constructing plate and shell
finite elements via the finite element displacement method.

Details of this work are discussed in this report and a summary of the content of the report is
presented next.

1.3 Summary of the Report

The results of our efforts during the course of this research are presented in section 2

through section 14 of this report. A summary of the contents of these sections is presented in the

following.

In section 2 the kinematics of the micro- and macro-structures were examined and the rela-
tionship between strain measures at micro- and macro-levels were derived. The field equations
for composite laminates were derived through a direct integration of field equations of classical
continuum mechanics. The linearized kinematic measures were derived in the context of
infinitesimal deformation and the relation of linear strain measures with displacement vector and
director displacement vector were obtained. The equations of motion in the linear theory were

derived and were presented for both curved and flat geometries.

Section 3 showed the derivation of constitutive relations for composite laminates. A pro-
cedure for deriving the relation between composite quantities (i.c., composite stress tensor and
composite couple stress tensor) and strain measures at macro-level were presented. The deriva-
tion was performed for a bi-constituent composite laminate and the constitutive relations were

expressed in terms of material constants associated with every individual layer.
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Section 4 presented the complete theory for linear elastic composite laminates. The rela-
tionship between the displacement vector and the director displacement vector was derived
based on the geometrical continuity at interfaces. The field equations were derived in terms of
displacement vector and it was shown that classical continuum theory can be derived from Cos-
serat composite theory for the case of a single constituent. The theory was further simplified for
bi-laminate micro-structure composed of isotropic constituents. Finally the constitutive relations
for composite stress tensor, composite couple stress tensor and interlaminar stress vector were
derived in terms of the displacement vector, its gradients and material constants of individual

constituents.

Section 5 was the extension of the theory for multi-constituent composites. The micro-
structure or representative element was assumed to be composed of several constituents which
repeated themselves in the layering direction. The development of this section is particularly
suited for fiber reinforced composites where the fiber direction changes in the stacking sequence
of the plies. The theory was simplified for the case of isotropic constituents.

Section 6 presented the extension of the theory from a purely mechanical theory to a ther-
momechanical theory. In this section composite ficld quantities corresponding to the heat flux
vector, the heat supply and the specific entropy of classical thermo-mechanical theory were
introduced and the equation of local balance of energy and the Clausius-Duhem inequality were

derived in terms of these composite field quantities.

Section 7 presented the constitutive relations of linear thermoelasticity for composite lam-
inates. These constitutive relations were derived for the composite stress tensor, composite cou-
ple stress tensor, entropy, heat flux vector and heat flux couple vector. The developments of this
section were parallel to those of section 4 and a set of coupled thermomechanical field equations

in terms of the displacement vector and the temperature were presented.
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In section 8 a linear theory for cylindrical laminates was presented. Relative kinematic
measures for cylindrical geometries were discussed and linearized field equations along with
constitutive relations in cylindrical coordinate systems were obtained. The theory was extended
to thermoelasticity and explicit thermoelastic constitutive relations for isotropic layers were

derived.

Section 9 followed developments parallel to section 8 but for composite laminates with

spherical geometry. The theory was extended to thermoelasticity.

Section 10 presented the results of stress analysis of a composite laminate with traction free
edges. The problem of a finite-width symmetrically laminated composite plate under uniform
one-dimensional stretch was studied and it was shown that the present theory captures the three-
dimensional response of the laminate at the free edge boundaries. The predicted results were in

agreement with earlier studies of the subject.

Section 11 presented the wave equations in laminated flat composites. Expressions of wave
velocities for longitudinal waves, horizontally polarized shear waves and vertically polarized

shear waves were derived.

Section 12 followed studies parallel to those of section 11 but for elastic waves in cylindri-
cal and spherical laminates. Expressions for motion of rotary shear waves, axial shear waves
and radial waves in cylindrical composite laminates were derived and general solutions in terms
of Hankel functions of first and second kind were presented. Similar developments for spherical
laminates were followed. It was shown that for isotropic materials the displacement equations of

motion for waves with polar symmetry can be recovered.

In Section 13 the finite element formulation of the theory was presented. The approach
proposed in this work utilized a displacement field which fulfilled a priori the static and

geometric continuity conditions between contiguous layers. The order of the system was the
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same as in the first-order shear deformation theory. The chief advantage of the assumed dis-
placement ficld rested on its capability to model the distortion of the deformed normal and to
satisfy the continuity requirements without increasing the number and the order of the partial
differential equations with respect to the first order transverse shear deformation theory. The
theory was used to construct plate and shell elements for composite laminates which accounted
for the 3-D effects, through-the-thickness variations of stress and strain measures, and permitted
the warping of the deformed normal. These capabilities, in particular for curved geometries, are
unique features of the present developments. Based on these developments accurate stress
analysis of composite shell structures is no longer a formidable task.

Section 14 presented the results of several finite clement modelings. These analyses were
performed for both flat and curved geometries. Various fiber orientations were considered and

different loading conditions were examined. The study included:

e  extension analysis of flat composite laminates with free edges.
e bending analysis of composite plates with different boundary conditions.
e stress analysis of composite laminates with geometric discontinuity in the form of a

circular hole.

e  bending analysis of cylindrical shell composites with free edge conditions.

These analyses showed the main features of the present theory. In particular, an accurate model-
ing of discontinuities in composites and analysis of laminates with curved geometries was shown
through the application of the proposed theory. These unique enhancements of mechanics of
composite materials provide the required computational capabilities for further application of

composites.
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2.0 MICRO-MACRO CONTINUUM MODEL OF COMPOSITE LAMINATES
2.1 Kinematics of Micro- and Macro-Structures

Let the points of a region K in a three dimensional Euclidean space be referred to a fixed
right-handed rectangular Cartesian coordinate system x! (i = 1,2,3) and let ' (i = 1,2,3) be a gen-
eral convected curvilinear coordinate system defined by the transformation x! = x}(6)). We assume
this transformation is nonsingular in R, Furthermore, let £ represent the coordinate of a micro-
structure in the layering direction with & = 0 corresponding to the bottom surface of the micro-
structure. We recall that a convected coordinate system is normally defined in relation to a con-
tinuous body and moves continuously with the body throughout the motion of the body from one

configuration to another.

Throughout this work, all Latin indices (subscripts or superscripts) take the values 1,2,3; all
Greek indices (subscripts or superscripts) take the values 1,2 and the usual summation conven-
tion is employed. We will use a comma for partial differentiation with respect to coordinates 6%
and a superposed dot for material time derivative, i.c., differentiation with respect to time hold-
ing the material coordinates fixed. Also, we use a vertical bar ( | ) for covariant differentiation.
In what follows, when there is a possibility of confusion, quantities which represent the same
physical/geometrical concepts will be denoted by the same symbol but with an added asterisk (*)
for classical three dimensional continuum mechanics and no addition for composite laminate
(macro-structure). For example, the mass densities of a body in the contexts of the classical con-
tinuum mechanics, and the composite laminate (macro-structure) will be denoted by p* and p,
respectively.

The micro-macro continuum model of a composite laminate is illustrated in Figures 1 and
2. Figure 1 shows a typical composite laminate (only three micro-structures are shown in this
figure). Figure 2 shows a shell-like micro-structure with its associated coordinates. This micro-
structure is composed of two constitutents and can be generalized for cases of multi-constituent

composites.
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k' micro structure

Figure 1

A composite laminate consisting of alternating
layers of two materials

Figure 2

A SHELL-LIKE MICRO-STRUCTURE (REPRESENTATIVE ELEMENT)
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We begin the development of the kinematical results by assuming that the position vector
of a particle P° of - representative element (k micro-structure), i.c., p (6%,0°® E.1) in the
present configuration has the form

P =r@©"6*® +£d(0"8*®) k=1,..n) @1

where r is the position vector for the surface & = 0 and d is the director field. 0*®, at this point,
is an identifier for the k® micro-structure. Greek super- or subscripts will assume values of 1
and 2 only. The dual of (2.1) in a reference configuration is given by

P* =R’(6°6°®) + ED(6°,6°¥) 22)
If the reference configuration is taken to be the initial configuration at time t = 0, we obtain
P(6%,6°® £,0) = r(6%,6°,0) + £d(6%,6°¥),0)
=R(6%6°®) + ED(6%,6°*) = P'(6%,6°V}) 23)

The velocity vector v° of the three-dimensional shell-like micro-structure at time t is given
by

* % 93K
v <P (eugg: & _ P M E 1) (2.4)

where a superposed dot denotes the material time derivative, holding 8® and § fixed. From (2.1)

and (2.4) we obtain

V=v+iw 2.5)

where
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v=F , w=d (2.6)

The base vectors for the micro- and macro-structures are denoted by g;” and g;, respectively,

and we have

a6° " 7 ot
.7
=3P =9
8a 6% 1 =0 » 83 ag 1E=0
Using (2.1) and (2.7) we obtain the following relations between gi' and g;
&; =g+t ad.u
(2.8)
g3 =g3=d

where ( ), denotes partial differentiation with respect to 6°.

By a smoothing assumption we suggest the existence of continuous vector functions

£,(6.0%) for the macro-structure with the following property

£:(6°.6%) g = £,(0%,6°®) (2.9)

where g(6%,6°®)) are defined according to (2.7),. A similar smoothing assumption is also made
for the director d which we like to attach to every point of the macro-structure. Based on the

smoothing assumptions we can write (2.8), as follows

8a=8a+ 58 (354 (2.10)

where { } stands for the Christoffel symbol of the second kind and is defined as

(¥ al =gt = 3 G+ S - 2
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The following relations can also be derived between the components of metric tensors
5 =% % wdg=g g

gap = Bap+ El(3 ¥ algm + (3% p)2ad + (3 o} (37 plBy
Ba3 = Ba3 + &3 " o)8i3 @I
£33 =81
which after simplification and linearization in terms of § redpce to
Bop = Bap + S8ap3
8= 8+ 5 EEma @.12)

[ ]
£33=83

The determinants of metric tensors g;; and g;; are also related according to the following

relation

g =g+&A (2.13)

where

g’ =det(g) , g=det(gy)

£11,3812,3833,1 g1 812 813
A={g); 82 823 | + | 812382238332 (2.14)
813 823 833 813 823 Bn

and the final result has been linearized in terms of €.

We recall that the director d is the same as g; and therefore when referred to the base vec-

tors g; it has only one non-zero component, namely d3 = 1, so we can write
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d=dg , d®=0 , ¢’=1
(2.15)
=g , &=gs (=123)

where d; and d' denote the covariant and contravariant components of d referred o g' and g;,
respectively. The gradient of the director d may be obtained as follows

di=gs= X a=d"g

The vertical bar ( | ) denotes covariant differentiation with respect to g;;. For convenience we

introduce the notations
Aj=gi-d;=d;);
2.17)
Ny=g'-d;=d;
From (2.17) it is clear that
A= g®y (2.18)
Making use of (2.17) and (2.16) we have:
Mi=di;=(5";)
(2.19)
A-ij = gul",- = [3j,i)
Consider now the velocity vector v which can be written in the form
v=vig =vyg (2.20)

Again we make a smoothing assumption for the existence of the vector function v(6%,8%) such
that v(8%,6%),gigxm = F(6%,6°™) after which we can define the gradient of the velocity field and

we have

vi=(Vg);= Vg Q21)
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We now introduce the notations

Vi =8 Vi= Vi
2.22)
vi=gvi=vy

From (2.22) it is clear that
T

Vi= "ﬁ!i = Vjigj

We observe that both A;; and v;; represent the covariant derivative of vector components and

(2.23)

hence transform as components of second order covariant tensors.
We may decompose v;; into its symmetric and skew-symmetric parts, i.c.,
Vij = Ve + Viig = My + @5
1
Ni=Ve=73 (vitv) =Ny (2.29)

1
@y = vpig = 5 (ViVy) = - 05

Also in view of (2.6), (2.7), and (2.24), we may express g; in the form

(2.25)

Egk'”ukék-‘i:gk*wép*'lusés '




2.8
= iig + Aot + AW,

= [A& + A mfraf) + A2whig,

The dual of the above expressions in the reference configuration can be written casily by

substituting appropriate capital letters for small letters.

We now introduce relative kinematic measures ¥;; and x;; such that

where

. 1
A=13ji] = 2 (Gsjj + G;j3-Gsy)

Making use of (2.12) and similar expressions for the reference configuration we can relate

relative kinematic measures 'yi; of the micro-structure as follows
e _ 1
Top = Ya = 5 (Zap - Gap)- = [(gap+§ga53) (Gap + & Ggpa)l
1
=Yop + 5 5(8ap3 ~ Gap)

=Yap + 5 60k + Xgo)

. * l
Yos=Fa = (@ + 5 & 8330~ Gu + 5 § Gs,)]

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)
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= Va3 + -;— § X3q (2.32)
T3 ="¥3 2.33)
In obtaining the above results we have noted that
1 1
Aap=[3B0]= > (8308~ 83p0) * 5 EaB3
Ao = 3031 = 5 530 @34)

Xap + Xga = Bap3 ~ Cap3
and we have linearized the result in terms of €.
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2.2 Basic Fleld Equations for Micro- and Macro-Structures

The three-dimensional equations of motion in classical continuum mechanics are recorded
here for the k™ representative element (micro-structure) in the present configuration

p'g’ =0 (2.35)
T, +p'b’g" 12 =p"v'g" 2 (2.36)
g xT=0 .37
where
=g 2T | T =g Mg (2.38)

The argument of all starred functions recorded above is (8%,6°®)E,1) and the equations are writ-
ten for each and every representative element (k = 1,2,...,n) which is assumed to repeat itself in
the present model.

Now introduce the following quantities for each micro-structure:

Composite Stress Vector T

&
Ti(e“,e”‘),t)‘;gl- [ ToUePWE 1k 2.39)
2 o

Composite Stress Couple Vector S*:

&
S“(O“,Os(k),t)é—g— | ET* (@ PM £ 1t (2.40)
2 o
Composite Mass Density p:
1 &
pg‘”éz— [ o'V 2dE (2.41)
2 o
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¥ .
pea) 2y [ @ (0=12) (242)
Composite Body Force Density b:
L &
pg' ég—z [p’ng" R (2.43)
Composite Body Couple Density c:
l h ¢, ® O
pgc2 g~ [ p'b'g R4 (2.44)
]

The quantities on the left-hand side of equations (2.39)-(2.44) are discrete in terms of the vari-
able 6°® which are made continuous by smoothing assumptions. The composite mass density
P, in the reference configuration is also defined as follows:

&
pon=§L2 | peG"12dE (2.45)
[ ]

where p, is the mass density of the micro-structure in the reference configuration. Since
p°g’12 = pG*12, the continuity equation for the macro-structure is readily seen to be
pg'?=p,G'? (2.46)

Now consider equation (2.36) and first divide it by £, and then integrate with respect to

from 0 to &, to obtain the equation for balance of linear momentum for the macro-structure

& & &
1 Toea 1701 o 17 eeupn
3} ‘!T adst &2 ! /3 &+ & !pbg %
&
= Elz- [ p"(v + Ew)g*12dE (247)
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Each term in the above equation can be represented in terms of the quantities defined in (2.39)-
(2.44) except the second term which is the difference between interlaminar stresses above and
below the representative element divided by its thickness &, as
1 ? L . §
827 & )

Now we postulate the existence of the continuous vector function 6(8%,6%t) whose values at

[T*3(6%,83%+D ) — T*3(8%,03%) 1)) (2.43)

6° = 0°® are the same as interlaminar stresses T 2(0%,6°®),t) and further approximate (2.43) as
the gradient of this function in the 0? direction. With this in mind we write (247) as

T+ ch +pbgl?2 = pgl2(v 4 zlw) (2.44)

To obtain the equation for balance of director momentum, (2.36) is multiplied by &,
integrated from 0 to &, and divided by &, to get

& &
18 e 18,
&2 !H a5t 33 I

El- { ‘lﬂgdg

3§
&
[ p"g 1RV + EX)dE (2.50)

1
&

Again the second term in the above equation can be written as

& L.
L aggs dg-a—m"]o % I Td=c-T° @3D

As a result we have

§%, + 6 - T3 + pg'Pc = pgV(z!v + 22W) (2.52)

which is the equation for balance of director momentum.
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Next, we consider (2.37), divide it by §, and integrate with respect to § from §=o to &=§,
and making use of (2.8), , we get

&
El‘Itz;xT‘“+z;xT">d§=o
2 o

or (2.53)

& &
-gl—z_[(ga+§d'°)x'l"“d§+—§l-2- faxTPdE=0

and substituting from (2.39) and (2.40) we obtain

g xT+d xS*+dxT3=0 (2.54)

which can also be written as

gixT +d,xS%=0 (2.55)
This is the balance of moment of momentum for the macro-structure.
Now we proceed to obtain an expression for the specific mechanical energy. Such an
expression for each micro-structure can be written as
p'g’ V% =T - v} (2.56)

First, using (2.5) we write this equation as

p'g‘mé‘ =T*®. (v+Ew) at T3 . = (v+&w)

§
=T v +ET°% W+ TP w .57

Dividing (2.57) by &; and integrating with respect to § from & = 0 to § = £, will result in

1 . om *q 1 i TG ¥ 3
'E,_‘! edg—-—j'r dE v, E—!& dE - w g+ !T dg - w (2.58)

+L
&
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We now define composite specific mechanical energy for the representative element by

&
pg'Pe= -;; [p'g e ak (2.59)

From this definition, the equation of continuity and other definitions (2.39) through (2.44) for

composite quantities, (2.58) can be rewritten as

PE =T v +5% wo+T - w (2.60)

Since v =¥, Vg = (F) g = ¥4 = §, and w = d = g, we can further reduce (2.60) to

pgPe=T - §+5% w, (2.61)

which is the appropriate expression for the specific mechanical energy of the macro-structure.
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2.3 Field Equations in Component Form

We obtained the following field equations for the macro-structure (balance of mass is not

recorded since it is a scalar equation)
T+ % +pg = pg'A(v + z'w) (2.62)
§% o + 6 - T3+ pg'c = pg2(zV + 2w) (2.63)
gixli+daxS“=0 (2.64)

And also the following expression was derived for the specific mechanical energy

pgPe=T -§+8% w, (2.65)

By referring various vector quantities to the base g; we would like to write the above equa-

tions in component form. First write

Ti = gl72 lig, (2.66)

o =dlg; (2.67)

§% = g1 s%g, (2.68)
b=bg , c¢=clg (2.69)

where 19 and S% are contravariant components of composite stress tensor and composite couple

stress tensor, respectively, ol is the interlaminar stress. Now substitute in (2.62) and obtain

(2 %ig) o + % (0'g) + pg!big; = pg ! + 21vg,

(512 1) g+ 812 1% (% ,)gy + 058+ O (% 3)E + pE'PDlg;
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= pg'(V + z'Wg;

or
@2 ), + g 2 ( I )+ 3+ 0k (I3} +p gD

=p g2 (VW +2!w) (2.70)

Equation (2.63) reduces to
(82 5%g) o + og; - g' ig; + pg' iy
= pg'22!V + g

or

@2 8%) o+ g 28 (1 i o) + 0~ g P i+ pglldi =p g2V + 2%)  (2.71)

Equation (2.64) can be rewritten as

g; X (gllz fjgj) +2d 8 % (glﬂ Sajgj) =0

or

g2(tl + Al S%)g; x g;=0 272

since g # 0, g;xg; =s,-11g“ and g is skew-symmetric we conclude that the quantity in
parentheses in (2.72) must be symmetric in i and j. As a result, the conservation of angular

momentum in component form is the symmetry of T3 defined by
Ti Lol 4 A1 SY (2.73)

T =T# (2.74)

The expression (2.65) for the specific mechanical energy can also be written as
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pg'e = g% oy i+ 5" 8% Wy,
= g'2(t%g; - g + S%wj)o + Tlg; - §3)
= g!2(eig; - v o + Tl - w+ §%wj )
= g!2(®%v;) + Diw; + 8%w; )
We have now the component form of the expression for mechanical power
PLpe = 1%, + Olw; + S%w; (2.75)

An alternative form for mechanical energy expression is derived in which the rates of rela-

tive kinematic measures will appear. Using (2.25), and (2.26), we rewrite (2.75) as

P = pe = 17N, + 0) + Tw; + Sy + AT + 0) + Adw]]
= (¢% + SPASIN, + (2% + SPIAS) 0 + SPIA g
+ (1t + AgSPhw,; (2.76)

Recalling (2.73) and using symmetry of T and skew-symmetry of w;; we can write (2.76) as

P =T%n, + SPikg + Tw; + Ty Q77
By (2.25), we have
8a 88 =MNpa+ W » 88 8 =Nap+ Wog (2.78)
Therefore
Bop=Ba 8p+8a 85 =2MNop (2.79)
Mog = 5 Bab = Yap (2.80)
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In the last result we have used the definition of Y,g from (2.27). By (2.25)) 2 we have

£ 83=Taa+ W3
£ 8a=Wq
Therefore
a=§a‘¢3+§3'l¢=ﬂx+%+wa
Tsa = Bo3 = (W3 + W) = 23 = (03 + W)
Again by (2.25), and (2.27)
-3 ~_l_.
=g &= 2 £33
. _l_ =w
B3= 2 833=W;
and by (2.28)
Aip =%

Substituting from (2.80), (2.84), (2.86) and (2.87) in (2.77) we get

P=T mmy.aa + 103[2'9“3 - (3 +Wo)) + Sp"k’a + T”'wu + T33'.Y33 + 103(03“
which is simplified to
P= T““yap + 2103703 + T33‘.Y33 + Spjkjp
If symmetry of T' and v is considered we can further simplify (2.89) and obtain
P = Tiy; + SPixy

or

BASE
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P = (¢ + A1S%yy, + S,

(291)

BASE




2-20
2.4 General Constitutive Assumption for Elastic Composite

At this point we postulate the existence of specific internal energy in purely mechanical
theory which depends on relative kinematic measures ¥,; and X, as defined in (2.27) and (2.28)
V= V(Xa) (2.92)

P=py (2.93)

By usual procedures we obtain from (2.91), (2.92) and (2.93)

di=p( L 2} .‘%’_) (2.94)
i it
S%=p -%_L (2.95)
jot

Now the composite stress vector T and the composite couple stress vector S* from (2.66) and
(2.68) will be

Ti=pg Y -2y Doy, 296)
) L
= pg (25
S*=pg (0 @97)

The coefficient pg'? can be replaced by p,G'? by taking advantage of the continuity equation.
Note that by these constitutive relations for T' and S® the balance of moment of momentum is

identically satisfied.
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2.5 Linearized Kinematics

For linearized kinematics let
r(6>,6°® 1) = R(6%,6°®)) + eu(6®,6°®,1) (2.98)
d(6%,63® 1) = D(6%,6°®)) + £5(6%,6°®,1) (299)

vei=en w=d=¢bd (2.100)

where € is a non-dimensional parameter. The motion of the macro-structure describes
infinitesimal deformation if the magnitude of the gradient of the displacement vector €u and the
magnitude of the director displacement vector €8 are of the order of € << 1 such that in the fol-
lowing developments we can only retain terms which are linear in €. The base vectors g; are

found from (2.7), as:

ga=Rgy+euy (2.101)
g;=d=D+¢ed (2.102)

The corresponding vectors in reference configuration are:

Go=R, , G3=D (2.103)

We now proceed to obtain the relative kinematic measures ¥; and ;. Using (2.103), and

(2.101) together with the definition of 8qp and C‘aﬂ we write

8op= (Ga+eug) - (Gp+eup) =Gog +&(Gq " up+Uy G+ O(E) (2.104)
where O(¢2) denotes terms of order €2 in displacement gradient, where
Ga . II.B+ Uy - GB = Gu . ujmgj-l» lljmgj . GB

=Gy u",ag,+ Gy: u3|pg3 +u7|,,g,,° Gg + u3.ug3 - Gg
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=u"3Ggy - (G, +eu,) + u3|pGu * (D +€B) +u (G, +euy) - Gp

+u% (D +¢€d) - G

(2.105)

Retaining terms which are of the order of unity in (2.105) and substituting the result in (2.104)

we find

Yop = % (8ap — Gop) = % (ugip+ugia) + % (u7Dg + u,Dp)

(2.106)

Here covariant differentiation is supposed to be performed with respect to the metric G;; of the

reference configuration and instead of €eu we have used u with the same assumptions made for

linearization. Similarly we can write

83 =Gy +Eug) - (G3+€8)=Gy3 +€(Gy - 8+ u, - G3) + O(e?)
=Ggs + &8y + uz o) + O(ED)

Again using & instead of € with the same interpretation we obtain

1 1
Y3 =Ysa=7 (303'003)='E (8 +u3,0)

To find Y33 we write
3= (G3 + 68) . (G3 + 88) = G33 + 2883 + 0(82)

1
1‘33=5(833'033)=53

As for the measures x;, we proceed as follows

laﬂ =gy" d.ﬂ = (Ga-l'eu'a) . (D.p-"es'p) = Aﬂb + E(U““,gj : D‘B + Gu ‘ 5’|ng) + 0(82)

where:

(2.107)

(2.108)

(2.109)

(2.110)

(2.111)
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Vo8- Dp="o(Gy+eu,) Dy + 1’ (G +5) Dy
= ) gy + U2 gA3p + O(E)
G- 8 ,pg;= 983G - (Gy+ €u) + 8 3Gq - (G +€B)
= 8qp + 8% gD + O(E)

Substituting these results in (2.111) and using the definition of kg we get

%op =R~ Aap = Wiap + aip + 5 pDa
Now we obtain an expression for K3,
Ma=83'0,=(G3+€8) D, +€dy)
A=Az +€(G;3:85+8- Do)+ O0@ED)
We simplify each term separately
G3-85=G3" (§58) = 8",4G3 - (Gy+¢u,)
+8%4G3 - (D +€8) = §",,D, + 8 4D3 + Of€)
=8,,D; + O(e)
5D, =) 08,60 =) - D* 463
= AJ(%,+ 5°g3) " G3
= AJ(3YG, + eu,) + 8%(G; +€5)] - D

= O(€) + ASSD, + AZ5;D* = AZOD; + Ofe)

However, since D*=0and D* =1

(2.112)

(2.113)

(2.114)

(2.115)
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D, =8,D' =, (2.116)

Substituting from (2.114), (2.115) and (2.116) in (2.113) and using previous notation for & we

obtain

"3a=3\oa-A3a=5i|aDj"’A353=5nu+A35s (2.117)

To recapitulate the relative kinematic measures in linear theory are:
1
Yop = 5 (Uaup +Upia+ oD + u?gDy)

1
To=Ya=7 (U310 +8p)

T3 =83 (2.118)
Kap =Aéuj|0.+ 5a15+ 83‘BD“

K3q = 8310+ A3,
For a composite with initially flat plates we can always choose our base vectors G; such that
Gjj= Gi= 8;; and as a result D* = D, = 0 and if we confine ourselves to small deformations, then

all Christoffel symbols vanish and covariant differentiations reduce to partial differentiations and

equations (2.118) for relative kinematic measures will further reduce to

1
Yop=75 (ugp+up o)

Yo3 = % (u3,0 +8p)
(2.119)
T3 =83
Kaﬁ=8a,ﬂ ’ K3a=83.a

In writing these relations it has been noted that D, =0, D; = 1 and A} =0.
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It is also desirable to find a relation between g and G, determinants of metric tensors in

present and reference configurations, in the linear theory. We recall the following relations

g7=g,xg83 » G?=G;xG, Gy

g1 X g2 =(G; +eu ;) x (G, +euy)
=G, x Gy +&(u; x Gy + G; xuy) + Oe?)

(8:2:83] =[G} X G, + €(u) X G, + G x up)] - [G; + €8] + O(e?)
=G+ €[G; x G, 8+u; - G, xG3+G;3 x G, - u,] + O(E?)
=G2+eG[G*- 8 +u, - G' + G*- u,] + O(e)

Retaining terms which are of the order of € and using the previous notations for u and 8 we get
(-é—)"z= 1483 +u% (2.120)

Now the equation for balance of mass will readily reduce to

Po= p(-é—)m= p(1+8% +u%,) (2.121)

and since in linear theory displacement vector u and director displacement & satisfy linearity

assumptions we obtain

p=po(l =& -u%) (2.122)
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2.6 Linearized Field Equations

We use pertinent results from linear kinematics and usual procedures for linearization to
write the field equations in linear theory. It should be recalled in such analysis that g is replaced
by G, p by p, and Christoffel symbols are calculated with respect to G;;. By omitting the details,
the linear version of the equations of motion are recorded here

(Gm 1uj).u + Gln Tuk [kj a} + 05 + ok (kj 3] +Po Gln b’ =Po Gln (u' + zlsi) (2.123)
(G2 8%)  + G2 8% () .} + 0/ =G i+ p, G2 I = = p, G2 (z'¥ + 228)) (2.124)
Ti=1l4+ AlS% = TH (2.125)

For a composite with initially flat plies further simplification can be made. As mentioned
earlier, G = 1 and all Christoffel symbols vanish identically. The resulting balance equations for

such a situation will be
©  + 05+ pb) = p (i + 21¥) (2.126)
$% o+ 0 - 4 poi = p (Vi + 2) (2.127)
T = ¢l = ¢ (2.128)
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3.0 CONSTITUTIVE RELATIONS FOR LINEAR ELASTICITY

For the representative micro-structure let
T =clin . a=12

where

- o 0<t<g,
‘@] ik Ei<E<k,

3.1)

(32)

and ¢l (& = 1,2) are material constants in associated layers. Now we proceed to calculate T

and §® defined in (2.39) and (2.40). First we recall that T = g"12 ¢*ig’, g1 = g1 (1 + %- %),

gy =g,+&d., g5 = g; and for brevity we omit the index o in relations (3.1) and (3.2)

l &z L l g’ L] l: ®
% IT'd§=E; [ g2 1"gdg

=—- I g2 g de I 12 (chygp + 26505 + P g dE

Substitute from (2.31), (2.32) and (2.33) in the above relations and get




32
1 &
+Kyg - [P g2l E A
52 °
We calculate each integral separately, noting that
gRg = gm[g,+§(--g,+d.,)+ d,gzl
" e A
8is=8m(83+%§83)=8m(1+‘2—g'§)83
The first integral in (3.3) is
l b i L J L 1 g’ ¥ L L 4 L [ 2
g [y dh = [ gy P g g,
The first term of (3.6) from (3.4) is equal to

&
gng & Ic"’"’d§+gm(—— g+ d.,) jtc“"’dﬁ —m §—7{ &2 ciige

and its second term can be written as, from (3.5),

&
125 (1 [ cBUge 4 A .l.
g g3( §2 { c é 2 g

| &c™a®)
Combining (3.7) and (3.8) we rewrite (3.6) as

L &
gPg — ;5 | L[ ciae el b g I EcPdE + g2 dy g I Ec™dE

A 752 ngcr“dg

The second integral in (3.3) is

3.3)

(3.4)

3.5)

(3.6)

3.7)

(3.8)

(3.9)
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& &
&L J cb g1 gj.g‘m:é J @B g"17 gy + EcBoP g1 g aE (3.10)

The first term of (3.10) from (3.4) is

1z, 1 ¥ 1B 1z 4 1 ¥ 2.haf
g sy-éz-{&c dE + g (Egﬁd,,)g—z!& dg,
+ 2g_"2 g-zl f e cba (3.11)
and its second term from (3.5) is
12 A1
g2 83(E;I§c’3“5d§ 2——] E2BoPgE) (3.12)

Combining (3.11) and (3.12) we rewrite (3.10) as

& &
al gL [ Ecibae + A g L [ g2cioBge 4 g1 d.y'gl' [ E2cebae
° ° 2 o

2g172 E; 3
1 &
— [P e (3.13)
g °
The third integral in (3.3) is
& & &

gl I gcimg'lfl gj'd§ = gm g %2 ! §cij°3d§ + -2-3-17 g glz ! §2 cij""'dg

5:

-4, T ] gcimdgr (3.14)

+ gmd T I E2cNO3gE + ——
2g'2
The last result was written by noting the development in (2.13). The results in (3.9), (3.13) and
(3.14) can further be simplified by recalling (2.9);, namely d, =AJg; and using the following
definitions and results.
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Define
m=§,%,<1 (3.15)
a; 0<§g<g
' ={ 8 &i<d<f; G146
Then
&
.g;j g-i—‘l[mﬁ(-i-;-m)a,] ke-1 G.17)
Now (3.9) is equal to

g'” gj{mei* + (1-m)cj¥ + i’—: [mei* + (7.1-3- - m)ciX)
+x.g-§2l[ +(—-m)c{*‘]+—x,[mc, +(—-m)c§7"]}

= gl 8_,[(1 + L) ‘M gl Ml + ——)mcl

14m §iA §1(1
+(1-m)(1+ —4; —g— l,(l

818 L4mim?, 4
+ 5 S o) (3.18)

(3.13) can also be written as
12 gllmefoP s (L ooty o BB ey (L gy
chhat m 2 2 3! m2

2
+1.J;%‘[mcf’“"+(ﬁ;-m)c 1+—-x,—-[ +<——m>c§'“°11
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- +m 3%

(— - m)lc§®#)) (3.19)

The expression for (3.14) is exactly the same as (3.19) except that (a,B) in (3.19) should be
replaced by (a3). These results should be incorporated in (3.3) to find an expression for T'.
Due to the presence of the factor g'/2 g; in all these expressions and also the equality (2.66), we
can find the constitutive relation for 1, However before doing so we exploit the symmetry of
¢! 1o further simplify (3.3). Since ci® = ciiBe we can write

cij“bxﬂ, = cﬁ”‘xp‘, = c""”x@ (3.20)
Therefore,
. 1
cwxﬁa=5cﬂp(x,,+x,c) (321)
In view of (3.21), now we write (3.3) as

& &
T'=1y El; J ™ g g dE + K '517 JR g g g dg (3.22)

With the explanation presented above, now we write the constitutive relation for 1;

{(1+—) #‘+—A,(1+-EL)

+(-m )(1+—lﬂ &i1A )Cfu §1(l ,}\1(1 §1gA 1+mr+m? iRy

S
3g

3

+{(1+ )———P’“ 317< -é-g)mci"“
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§1(1-m) 88 lemem? o 8M 1
+=———(+m+ % m i + 3 [mz -m
384 1
'i-?-;—(':.;'3'—111)1‘—'3""'l 1% (3.23)

If we further restrict ourselves to small deformations of a composite with initially flat plies,
equation (3.23) can be simplified to

. , ” 2
2l = (mcf® + (1-m)ci¥)p, + —i‘- (mcf® + ’—:%— )% (3.24)

Of course in the above equations no distinction should be made between covariant and contra-
variant components of tensors. Using (2.114), equation (3.24) can be written in terms of dis-
placement vector u and director displacement vector 8, hence

2
;= (me{) + (1-m)xcFn, + 521- (mc{) + l:: cBixg

= (me{ls + (1-m)c@y) % (U + Up,0) + 2(meflh + (1-m)c ) (v o + 52

2
+ (me) + (1-m)c 35, + % (me) + -l-';'l- e84 (3.25)

Using the symmetry of ¢;3;'s (3.25) can be written as

1= (mcfls + (1-mlc By ug g + (mCjay + (1-michlus o

+ (mee) + (1-m)c{Eh )8, + (me ) + (1-m)x R )3

3! 1-m?
t3 (me$+ LT:Q ci)dia

= (mef) + (1-m)c B Juy o + (mc) + 1-m)c )5,
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2
. % (mef + SI_:J Do (326)

The same steps can be followed to calculate S* and we record the procedure here KS

sc_-l_}' _l.j *12 % o °gE
n. RAARA

&
=§l [ &gl codiys g d§=— I&s""(c“"“’mﬂc"’”m

&
+ g 'dE = m-— I gg"l2 colgs df.+x¢ I &2 g"12coiBg dr (G2n

This is basically the same result as (3.22) except that i has been replaced by o and the integrand
has been multiplied by §. The first integral can be reduced to the following by referring to (3.18)

3} 1 37

12 (3L 1 212 d _
8" g{ 5 fmef™ +(——m) cf¥) + o2 [mcf‘“ﬂmz m)c§

2 3
. A .
M 2L (me g (L - g 4 S ety (L oo (328)
3 m 8g m
Similarly the second integral is simplified and by reference to (3.19) the result is

2 3
g"’g,(g—[mc J‘B+(———m)of”“1+—[mc J"’+(—-m)c 9%

+k, & [mcfw+(—-m)c§'w}+k, [mc{""p+(-—-m)¢qm]}

mmA§1

=t e g5 l,é;(— + ——)mc{‘"“

+[

1 1-m® &4 1-m* JogiB L e
3 ¢ m? )+ 82 m’ A 4m’? lOg m* k2™ G29)

BASE




3-8

Again it is seen that because of the factor g'2 g; and the relation §* = 5% g'? g; we can readily

write the constitutive relation for S, the result is

scj = gl[-;- (tmlui‘)(l + g_l.) + glw_ ml
1 ,1-m? 51 51
4y O+ T S T + 5 ey
§l - i1 1A 1-m® | 8id 1w
+§l {(— {‘w+§lx§(7+ ‘ib—g’)m(:fm'i'( I + 8 = )c,gjlﬂ
sprgit 58 o o), (330)
™ = *log Tt 2 %m :

This is the general constitutive relation for S¥ in linear elasticity. If, as before, we confine our-

selves to small deformations of a composite with initially flat plies (3.30) can be simplified to

S"J-—ﬁl(mc opd , 1= ~m’ “J“’)'m+%§,2(mc{’jm+

ajlp
— ¢ F)xp (3.31)

with no distinction between covariant and contravariant tensors. Once written in terms of dis-

placement vector and director displacement and simplified as done in obtaining (3.26) we get

Saj 2 g (mc ajﬂk

“J“*)um 2 &, (e 4 1T coidys

+ §?(m0f‘”’ 1l g 2)5,5 (3.32)

As the results of this section indicate, even in the simplest cases of small deformations of
an initially flat composite (composites with flat plies) higher gradients of displacement vector
become significant and they appear in the constitutive relations for composite stress and compo-
site stress couple. As defined by (3.15) m is of the order of unity, §; and &, are usually small
lengths; however their products with components of ¢;3; and even the product of their higher

powers with elastic constants may be indeed significant quantities, in which case we get
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contributions to t;; and S, In the trivial case m = 1, §, =&, — 0 we get T = C;3 /% Sq; = 0 and

the equations of linear elasticity are recovered.
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4.0 COMPLETE THEORY FOR LINEAR ELASTIC COMPOSITE LAMINATES

The results of sections (2) and (3) are combined to obtain the complete equations for a
linear elastic composite laminate. However, before doing so we should derive appropriate
expression for p,, z! and z2. As before, we assume that the representative micro-structure is
composed of two homogeneous layers with respective densities p; and p, in the reference

configuration (p; and p, are constants). Recalling equations (2.45) and (2.46) we write

&

l | .
pg'2=p,G'? = — [ p,G"7dg 4.1)
& o
Now by (2.13) we have
n_gleg + B .
G GY“(1+ 2G) 4.2)

where A is understood to be the sum of two determinants similar to those expressed in (2.14)

except for substituting g;; by G;;. We have

Pe = (4.3)

p1 0<E<g;
{ pr E1<E<&,

Substituting (4.2) and (4.3) in (4.1) and using (3.7) we set
88 1+
Po=(1+ =)mp; + (1 + == E1A)(1-m)p 4.4)

Of course the composite mass density p is related to p,, through the equation (2.122).

We proceed similarly to calculate z! and 22 using their definitions in (2.42)

&
pg!Pz! = p G12! = El; [ EpaG*12ag 4.5)
0

* Here again the result has been linearized in terms of &.
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&
pg'z = p,G' 77 = El{ [ 8%p5G™ a5 (4.6)

After substituting from (4.2) and (4.3) in (4.5) and (4.6) and using (3.17) we get

2
poz' = —E‘l [+ i-)mm (2 E_;,‘G = e a.7)
pozz=—[(l+ 354 ——)mp +( + 354 ) P2l (4.8)
8G ~ '} m2 8G 3 '

For a composite with initially flat plies (4.4), (4.7) and (4.8) are reduced respectively to

Po =mp, + (1-m)p, (4.9)
2

p.2! —i(mp1+ Im ) (4.10)
3

m,z’-g (mpy + lm';“ P2 @4.11)

To formulate the complete theory it is also worthwhile to derive a relation between the
director displacement 8 and the gradient of displacement vector u in the 83-direction. In order to
derive such a relation we enforce the continuity of the position vectors p* and P* between two
adjacent micro-structures. Recalling (2.1) and (2.2), we have the following relations for the k%

micro-structure:

P (6%83® E 1) = r(6%,6°®),0) + £Ed(6%,6°W) 1) 4.12)

P’(6%,6°®) ) = R(8%,6°®) + ED(8%,83%) (4.13)

Now in order that position vectors p* and P* be continuous on the common surface between k'

and (k+1)* micro-structures we should have

P*(6%,6°M.t,) = P (6%,6°%+1),0) (4.14)
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p (6%0°® E, 1) = p*(6°,6°%*D,0,1) 4.15)

Using (4.12) and (4.13) we can write (4.14) and (4.15) as

R(6%,6°%* 1) = R(6%,6°®) + E,D(6%,6°) (4.16)

(6,63 1) = r(6%,6°®,1) + £,4(6%.6°®),0) 4.17)

Recalling (2.98) and (2.99) and identifying eu and €5 with u and 8 as before we conclude from
(4.16) and (4.17) the following

u(6%,030+1) 1) = u(e%,63®), 1) + £,5(6%,6°® 1) (4.18)

s(ea,e’“>.t>=zl— (u(8%,630+1 1) — u(e%,0%®) 1)) (4.19)
2

By smoothing assumptions and approximating the right-hand side of equation (4.19) as the gra-
dient of the displacement vector in the 6° direction we have

a
&e“.e’.t)=i“if’ae—;@ 4.20)
In component form we have
5 = ¥lg; = (vg)) 3 =V 3g; (4.21)
or
8i=l.lj|3 » 8j=Uj|3 4.22)
For a composite with initially flat plies the equation (4.22) reduces to
51 = uj‘3 (4.23)




4-4
With this simplification, equations (2.119) reduce to
1

Kja = Uja3 (4.25)
Using (4.22), equations (2.121) and (2.125) are also reduced to

Po= p(-é—)"’ = p(1+v)) (4.26)

P =po(1-u)) (4.27)

The constitutive relations (3.26) and (3.32) for T;; and S; for a flat composite are also further

simplified by using (4.23)

2
tij = {mig}"’ (l-m)c,%]uu+ {mclg)u + l%. ci%) Eil_ um (4-28)

and

1-m? 1-m’
o et 5 Efme + - Gyl @29)

Soj = % &1 (med +
Now we can write the field equations (2.113) and (2.124) in terms of the displacement vector u
and its gradients. It should be recalled that the resulting equations are the linearized field equa-
tion for small deformations of a composite with initially flat plies. These are the counterpart of
the Navier-Cauchy equations in linear elasticity. The appropriate equations for a general com-
posite will be derived in later chapters. Using (4.9)-(4.11), (4.23), (4.28) and (4.29) we write

(2.123) and (2.124) as
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1-m? §
(me+ (-mdeGlu o + (mep + —2 cRp) 5 g

+0;3 + [mp; + (1-m)p,Jb; = [mp; + (1-m)p,li;

1 2 .
iy §y(mp, + m PJu;3 (4.30)
and
—?
Lty 2 @i L ey + 12 gt
+ 0' - [mcgk),+ (l-m)cé}},)uu _— (mc§ cg}a}uhﬂ
_1 1-m*> ..
+[mp; + (1-m)p Je; = 5 §1(mp; + P)Y;
+— §?(mpl +d z)U,,z (4.31)

At this point we may notice that an ordinary continuum (a single material continuum) can be
regarded as the limiting case of a composite laminate when §; =&, = 0. Therefore, we may
anticipate to derive the equations of linear elasticity by letting m = 1 and §; — 0 in equations

(4.30) and (4.31). Doing so, equation (4.30) reduces to

Cokia+ O3+ Pb; = pu; (4.32)

where subscript and superscript 1 are dropped because we have only one material. To simplify
equation (4.31), first we recall the definition of ¢ in equation (2.44) and notice that by the mean-

value theorem, ¢ = 0 as §;, — 0, hence

O'j - C3juuU =0 4.33)
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Substituting for o; from (4.33) in (4.32) we get

Cagllija + C3pti s + PY; = PU; (4.34)
and combining the first and the second terms we get

Ciix 5 + Pb; = Pij; (4.35)

For a completely isotropic continuum

Cya = By + 1(S By + 8,0 (4.36)

where A and p are Lame constants and (4.35) reduces to:

Hu, i + (AR, + pb; = pu; 4.37)

which are the equations of motion for an isotropic media.

For the case of the composite laminate we can also eliminate o; between equations (4.30)

and (4.31) to obtain the appropriate equations for displacement vector u. First we do this for a

static problem with no body force. For such a case we let

b=c=u=0 (4.38)

in equations (4.30) and (4.31), hence

2 3
[mc&}zl + (l-m)cgi;}uua + {mc&}{s + l: c&%&ﬂ] 7" uk.ﬁ&! + cj.3 =0

and
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3

- (m¢a£z+ C&%l%n+ - (mcéip + ‘ﬁal“t.paa
2
+0;- {mcfh + (l-m)c&]uu- = {mcf 4l

Eliminating ©; between these equations, we get

2
(me+ G-mpoBvg o + (el + 12 e L 1y

2
+ (mef) +(1-m)c§§2,1uw+ (mofl, + ‘:‘ ofBu} U 033

—m? -
-%{mcé%+ 1: e}y 3 - Ly 5 (mciRp+ lmm cZs)uy par3 =0 (4.39)

By combining the first and third and also the second and fourth terms of the equation (4.39), we
get

2
(me{}+ (1-m)cfNuy 5+ %‘ (me + l-: Cikh Ui

3 1-m? & -m’®
—-zl[mc&l + : cé’,{,]uhm-—;-{mcﬂa-f- lm? C2p) Uy pa33 =0 (4.40)

This is a fourth order partial differential equation for displacement vector u. Now we apply this
equation to a composite laminate whose micro-structure is composed of two isotropic layers.

For such a case we can write

C& = 115118“ + ul(&,kﬁj, + Sﬁjk) (4.41)

where A; and y; (i = 1,2) are Lame’s constants for the respective layers. Introducing equations
(4.41) and (4.42) in (4.40) we get the following for each term:
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(me} + (1-m)efhuy 5 = m(Agugy; + 1y g + vy )
+ (1-m){Aguy y; + Ma(uy x + Uy}

= {m@A; + 1) + (1-m)AzH) huyy; + (myy + (1-m)pp)u;

(e + L D0y = B+ iy Bap + B s
+ 470 (38 B+ 1B+ B e

= m[llﬁuﬁuu&m] + my, { sikspllhm + %Sﬁuwl

“'“‘ L 2, Bg0tp.0) + - uc@xspuuee + BpaByete o)

(1

= {mh,; + (1 ~m) A)ug o3 + (mpty + P'zls,a kko3

1 2
+ (mp, + L}:;) H2) U 003

(medy+ — (l C%’uuw m{A;88y; + 11 (SaB + BB} Uk s

2
+ 4750 (5. B0+ n by + 8u) o

= mi\,l(ﬁajukm) + ml.l.l(llu.,as + uj’m)

( m’) (

+

A2 (Bojy xo3) + l»‘z(“m + U 003

=ty + LD 558+ o+ LD g+ )

(4.43)

(4.44)

(4.45)
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{mcé‘ + mz i’]uhm3 = m{ll c’% + ul(ﬁh‘,&ﬁ + %5*)}““3

3
0 (ABoBig + 12 (Boabip + BapBy) Ui puss

= mA; 85;up 8o33 + Mty (BipUg ga33 + Ujaa13)

l—m

7 MBojuppass + =z H2(8;8U0,8033 + Uj.a003)

= (m)\, = M)5 ;U8 B33 + (it + L Hz)(%“a.sam + U 033)

Substituting (4.43)-(4.46) in (4.40) we obtain

3

2 (mh; + ’muwﬂmu o )

1791 ol ka3 + u;,cas) E‘

+ {mQ; + 1y) + A-m)(Ay + ) Juyy; + (mpy + (1-m)py }u;

& (mh, + (1-m?) & (l-m)

uz(\lwﬁ'u

-?(mllx P»z)( B33 + Y a033) =0

Now we introduce the following definitions in the last equation:

(4.46)
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The result will be

E - -
(M2 + 11Uy + Ryguy p + 71 (A 12Ug o + H12(85aUx ko3 + U 000))

4-10

Au = ml.l + (l—m)M

Mz = myty + (1-m)u,

- 1-m?
Ap=mk + ;n A

1-m?

ﬁn=mu1+ H2

Rp=mhy + I;Ts 2

= l-m3
Hiz=miy + =5~ Hz

&1 -

=5 M2 8ojtres = 57 Piz(tigos + U 0a3)

& -

A12809p.pa33 = 3~ H12(Bjgt.a33 + Ujn033 = 0

(4.47)

(4.48)

The above equations are counterparts of the classical equations for linear elasto-static problems

in the absence of body forces. We need to write these equations in the expanded form. The

result would be three scalar equations as follows:
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Qg+ o) ) (3“14,3“2_’_&13)”l (32“1+32“1+32“1
BT 00T o 2 007 o8  06]

§i-= 2 0y du § - P duy du, Jduy

+*2 M2556; Go, 3,0 2 M2 36,96, (36, T 36, ¥ 6,

G- 3 Py Fw & 2 oy a“z+3“3

3 Mgy (g2 * 3620 "2 M2 B 08, (B, * 36, * 36y
R . B I G, B,
27123090, 20, 08, 2 238, 202 00?
2. & 3y o E_ P 9y oy
_? 12 8913932 (%14’%2)_-_3—”12 wlaeg (ael+ae2)
§12 = az a2u1 azul
- — -+ =0 449
311128632 %2 3922) (4.49)
This is the first equation for j = 1 which can further be simplified as
9 ,0uy odu, Odu; azu1 32“1 32“1
A2+ K1y %, (891 + 2, + 863)+u‘2( 3912 + 3922 + 3932
& - = Fus
+ = -App) ————
5 G2 12 36907
2
1 = = i aul a‘12
3 (Ilz ulZ) 3913632 (%] + %2)
§12 = 32 azul azul
—— + =0 4.50
The second equation will be
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3u2 du, v, oy,

A2+ K1) 80 30, 892 %, )ﬂllz(aelz + %3 + 6932)

& - 33u3
+_ 0‘12-112) *23932
3 = o 3“1 du,
"Talzﬂlxz) 392393 + 362)
§ o 2 o,
- =0
3 P12 307 o7 * 202

And the third equation is

9 ,Ou Ju, dug dtus Py azu3
Gzt D 56, Go, * 202 * 36, M1 507 * 307 * 02

gl 'y 32 aul auz - d azu3 ale3

2 3932 (wl"’%z)"'“lz %3(391 2)}

& - 9 9y a“z 9 O dhy
”‘2[8932(891+ 393(861+6022)}

& 2 oy

-3 P2 2(‘393 363) =0

or

(4.51)
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7 ( + )=0 (4.52)

For future reference we will also calculate o; for static problem in the absence of body
forces. The preceding results are used in conjunction with equation (4.31) which has been
simplified for such a case and reproduced before the equation (4.39). From (4.45) and (4.46) and
(4.47) we have

1-m? = -
{medd+ (_T:;) °g'zl}“k.h = Ay2 8oy ko + M12(Ug jo + Uj00) (4.53)
l" 3 - =
{mct(:_liZB + mn; C&ﬁﬂ}uk’m = Iu sajllp_w + un(ﬁjsua',m + uj.m,s) (4.54)
Using (4.36) we get

(mefl + (1-m)effhuy = [mA; + (1-m)Ay1838, 10

+ [mul + (l—m)uq'][83k8,, + 53,8jk]uu = 11283juu + ].112(03 J + llj'3) (4.55)

(1-m?
m

(mefid, + 2 )i s = 11283 Bkatias + M12(B3iBia + 83083y 03

= A1283Ug 03 + l-llzsjaus.us (4.56)

Substituting (4.53)-(4.56) in relation for 6; we obtain
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& = =
O = AyoBaup y + Wya(u3 j+ uy3) + —2-(11253,'%,«:3 + H128;0U3 g3]
& = -
=3 MBauya + hizllag + Ui 00)]

- %’ &t ﬁlzsujuﬂ.&ﬁ + ﬁxz(sjpuu.w + ;. 003)] (4.57)

Writing down the components of 0; separately we get

duy & - Puy & 9 du du Iy
)t 2 M2 306, "2 M2, 36, 0, T )

o) = 912('331- +

._..gl— a (aul+3u2)__§_l_- (.az_ﬂ_.}..ﬂ)
2 M250, ‘30, T30, "2 M2 3e7 T 02

. 2 oy du
=3 M2 5936, Ge, t %,

= d
Tul2 aelaes (391 + aez)-T 12 863 (aelz + 3922)

I T N A T N . .
—sz(E'*'aTl)w‘—z'(uu-lxz) 30,90, 2 2+ 112 %, (891 + 362)

& - o vy & . - 2 ou oy
"2—1112("8":2""?22)-?(1124‘“12) 36,90, (391 + 392)

__3_ 663 (aoz + 3922 b2 (4.58)
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§1 92“ &t - 3“ du,
- -5 Gu+
12( mz 8922 ) (x12 ulZ) aezae %1 aez)
o, o
e 3+ — (4.59)
3 ae3 % 392
§1 =~ gl - §l3 =
O3 = Aoy g + 240033 + 3 (A2ug ) - 2 R12(Ug 30 + Y3,00) ~ 3 Mi%0m
_, ,Oup  du; duy ous &= g du  du
-;'12(*14'362"'%3)"'2”’12% A'12393(89 +aez)
§1 - 9 0y du & - a7'“3
5 M2 %, (892 + 362) 5 M (3.? 302 )
§12 = (a2u3 a2u3)
3 H12 62 | 202
aul allz 3113 51 aul au2
7\12( 392)4*(112*2“12) 30, (112 1D 89 391 862)
&1 - azus az“3 & - 9 Ny
-—-Lllz( 822 )-—3-#12 3, (8912 + 3622) (4.60)

The constitutive relations (4.28) and (4.29) for t;; and S; for a flat composite are also
simplified here for a composite laminate whose micro-structure is composed of two isotropic

layers. Using (4.36) first we simplify different terms of the expressions (4.28) and (4.29)
(mefd + (1-mcfug, = (mhy + (1-m)ho) 88

+ {mpy + (1-m)py} By + 6,0, + vy

= 1128ijuu + u.lz(uid + uj.i) (4.61)
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where (30.47), , are used.
(mcdR + Cgﬂll“u = X128 B + B12@Budy + SaSpuy,
= Xlzaujuk.k + ﬁlz(“a,j +u;4)

1-m

(me$) + 2 — Clz) Yy a3 = A1 Baticas + M12(8adia + BiaBp )ty a3

= A 128;0g03 + H12 it a3 + Bigljs)

1-m3 T =
megids + mr? C5Rp i g3 = R1280;Bypti 3 + Mi2Geudip + BupBydu g
= X1204;ug,83 + ﬁ12(5,-a“u,33 +U;3)
Substituting (4.61)-(4.64) in (4.28) and (4.29) we obtain
Tij = ApaBijunx + Hya(u; + u;5)

§1

[A'lzsuua.as + H12(Bial; a3 + Siglj03)]

§1 [7_\125@“1:.& + lllz(ua.,, +1;4)]

1.o= =
+3 &2 (R12805up,p3 + Pi2(Sjpuic,p3 + Uj00)]

(4.62)

(4.63)

(4.64)

(4.65)

(4.66)
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5.0 LINEAR CONSTITUTIVE RELATIONS FOR A MULTI-CONSTITUENT
COMPOSITE

In this section we assume that the representative micro-structure is composed of n layers

with different constituents. For such a micro-structure we let

ta=cly, (a=12,..n) (5.1
where c( (o = 1,...,n) are material constants in the associated layers. As before the variable § is
designated to change across the micro-structure whose thickness is assumed to be &;. It should
be noted that although the micro-structure is composed of n layers, &, is still supposed to be a
very small number. The range of variation of & in the /" layer of the microstructure is from &, ;
to §; where /=1,...,n and §, = 0. This convention is adopted due to its agreement with the spe-
cial case of a two-layered micro-structure which was studied before. We further define (n-1)

constants m;, . . . ,m,_, according to the following relations

§=mg, (=1,.,n-1) (5.2)

As a result of this definition the thickness of the /® layer of the micro-structure is equal to
(mm,)E, where = 1,....n and m_ = 0, m, = 1. The composite stress vector T' and the compo-
site couple stress S® and other quantities are obviously defined over the whole thickness of the

micro-structure. For example we have

1 - *

=E j TdE (5.3)
l L oL

=_§., !E,T dE (5.4)

In order to derive appropriate constitutive relations we make the following definition. Let
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a=a for & <E<§ (I=12...1) (5.5)

where a,’s are constants and £, = 0 as noted earlier. The function a is piccewise continuous for §

€ (0, &,) and we can evaluate the following integral

1 = 1 2 % 1 2 81
T | Efad§=-€ z J §ka,d§=—§: o EF-EEh  k=-1) (5.6)
[ ]
Using definitions (5.2) we further simplify (5.6)
1 S 1 1 »® &
T f g“w;:a o 2 a{mFl-mrljek! = o 2 z a(m-mf) (k=-1) (5.7

where m, = 0 and m;, = 1. To simplify the final results in constitutive relations we first notice
that the integrals which appear in these equations are the weighted averages of the constitutive

coefficients. So we adopt the following definition

1 &
rore L [ gkorgr (58)
& o
which by (5.7) is seen to be equal to
I(k)pqn _ k+l g: Z chn(mk*'l - mk+l) (5.9)

We use the same contravariant or covariant index notations for I and c. However, the weighting
number k is always written as a superscript in parentheses. Whenever the covariant components
of constitutive coefficients are used, the layer index (!) is also written as a superscript in

parentheses. Recall (3.22) which for the present situation can be written as

& &
Tong [ Mg d s xay- [ G g Py (5.10
o o

Combining (3.4) and (2.9); we obtain
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g 2gg=g"(1+ %Xu+&kj) (5.11)
and (3.5) reads
g‘ln g; = gln 1+ %)33 (5.12)

The first integral in relation (5.10) is simplified using (5.11) and (5.12). We have

L Py
[* g g d

© Sy, 7

(P g1 gg + B g1 g3,

L 1
& &

=oll2
=8

&
'alI fa+ Eé)c'*’”dt +g' 2 Mg, = j &1+ SA)c"’”dc

&
+8%8 - [ 1+ Bttt

& L&
=g'? gj(é ja+ %)c"""dh H El,._ jea+ -g—:—)c“"“dg} (5.13)

Now we use definition (5.8) to simplify (5.13). The following expression would be the result

1% term in (5.10) = g g (10 4 -2% ORI 4 QSR 4 % By (5.14)

The second integral in (5.10) is also simplified similarly

&
é J &g g dE = ‘gl: § "7 (cPlgg + cPlgy)dt
0

© Sy "

L
_él,.— [eg2a+ SA)c‘B‘“gBd§+ - j E2g2(1+ -EAW cPlogg

1
1 .
+ [Egnas %)c"‘“gsdé
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3 &
=gi? z,-{é [&a+ %)c‘i‘“du ¥ ElZ [ e+ %x"%&x
(5.15)

which again by using (5.8) is simplified to
2™ term in (5.10) = g2 g,V 4 -2‘-:- [k ¢ p g2l 4 33 -% i) (516)
Substituting (5.14) and (5.16) in (5.10) we get the following constitutive relation for T
Ti= (IO 4 B i g dqisa, 8 o
(o % I 4 aaat % e
+ (Wil ;‘—g @i 4 JJqNBle -% OBy 1g g (517)
The expression inside the bracket is obviously the constitutive relation for t¥. Hence
ij = (Ot . A ik 3 pipkt | A 12yl
i =1 +2g1 +Ag(1¢ +2gl( M
+ Wi 4 B il 9 Jq@ila . B (O)iBi _
[ +2g1< +Ag(1¢ +2g1<3 N (5.18)

The same steps are followed to derive the constitutive relation for the composite couple

stress S*. By (3.27) we have

& L
$% =% é [ & g2 Mgt + xp é [ g0 g*12 gtdE (5.19)

which can be reduced to the following form by exactly using the same procedure
o (e B it g jq@end A G
§*= (I t g ] Ma 2g1< M
2B, A i L g jqerB . A (@oys 124
+ [IDB 4 % 1098 4 AIarer® 4 % 191k} g1 g; (5.20)
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Subsequently the constitutive relation for S% would be
aj — il . 8 (k! | g jq@eow , 8 Gkl
S = ek 4 oy 13k 4 M@k 4 %8 Sl a)) '8

B, B (0B | 5 iqCred , A @
+[1¢@ +2gl(3 +Ai(® +2gl“‘""’)]x,p (5.21)

For small deformations of a composite with initially flat plies, the foregoing equations are
further simplified. The resulting relations are recorded here:

qil = JORLy | 4 [N (5.22)

§% = [Maikiy | 4 (DB (5.23)

with no distinction between contravariant and covariant components. In terms of displacement

vector u and its gradients these equations can be written as follows:

% =Ly s+ K s (5.24)
Saj = 1§+ 1Rpurps (5.25)

Using (5.9) the constitutive coefficients are written in the expanded form
n
I = I cfm ~m.,)
r=1
D_1 g s Opm2_ 2
1= 3 & 2 cffm? -m?y (5.26)

1 n
115123=7 E2 X c(m?-m3))

r=1
To recapitulate, dﬁ’, (r = 1,...,n) are the constitutive coefficients of the micro-structure layers and
m,’s (r = 1,...,n-1) are dimensionless constants related to the thicknesses of different layers with

m,=0andm, =1.
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If the micro-structure is composed of n isotropic layers, we can write (5.26) in terms of the

Lame’s constants of various layers. In fact, we have

e = A)BiBu + e (8 By+ 8 8p) r=1,.n (5.27)

For such a case, the relations (5.24) and (5.25) are written in expanded forms as follows
n n
T = Uad;; :5'1 ANy (my—my ) + (7 5) rﬁ Hey(my—my. ;)
(3 n '
+ <5 Bidubias T Ay (m2-m2,) + (8;8,:+5:05;)

n
X Uq3 '_EI HeymZ-m?2 )]

or
S % ; + g‘ S E 2
Uex 8y 2 Agy Amy + gy T pAm, + == Bijug a3 T AAm,
n
+ 52“- (0;,038i0+0;,03830) z HepAm? (5.28)
l n n
So;= 7 GalOoDustis z AyAm?2 + (818 + 8B )uy g z KyAm/]
1 n n
+ 3 ElBaBpuips T AoAmy + Gasdip + 83g8,)us 2 pphmy)
or

1 n . n
Soj= 5 EalBogiicx T AAmy’ + (U j#U0) z HAm?]

1 n a
+ 3 SalSaipps T MoAme + Gigua s + Uj03) T BpAm] (529
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where for brevity we have introduced

AmP=mP-mP, r=1..n (5.30)

and in the above relations p = 1,2,3.

In order to obtain the complete ficld equations for a linear elastic composite whose micro-
structures comprise n layers we should substitute the constitutive relations (5.24) and (5.25) in
the equations of motion (2.123) and (2.124). However before that we should obtain appropriate
expressions for p,, p,z' and p,Z2. We assume that the micro-structure layers are homogeneous
with densities pé’) (r = 1,...,n) in the reference configuration. Recalling (2.45) and (2.46) we can

write
l L [ .
pg?=p G2 = T | oGk (5.31)
where
Po =pY for &, <E<E (r=1,.,n)
and (5.32)

E,=0

Using (4.2), (5.32) and (5.7) in (5.31) we conclude

& .
1 .o o 8% 2
Po= E ! 1+ %)Podg = El p&Am, + Ty fl p&Am? (533)
o - S

We will proceed similarly to calculate p.z! and p,z? using their definitions for the present situa-
tion. By (2.42) we have

&
pgmzl = pOszl - -é: J‘ Ep :G.md§ (5.34)
0
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pe2et = p GVt = Ie’ a1y, (539

Similar to what was done in the derivation of (5.33) we write

& n 2 g
por'= - [ 81+ 250000k = 5 & I plam + S 3 ooam? (536

= I§’(l + ﬂ)p:dé- & X 2 pFAm} + -i“i'; I p{Am! (5.37)

For a composite with initially flat plies, equations (5.35), (5.36) and (5.37) are reduced
respectively to

}: pAm, (5.38)

Poz' == én f- pAm? (539)
n

por =3 &2 £ p{Am? (5.40)

Now we can substitute (5.24), (5.25), (5.38)-(5.40) and (4.23) in (2.123) and (2.124) to
derive the linear equations of motion for a flat composite. The resulting equations are recorded

below:
100+ 1hL0p3 + b; 2 ps"Am, +0;3

= Z pPAm, + — §nu (')Am,z (5.41)
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’&l“hh + Ig)a“mas +0;— I&“u - lﬁﬁ“m

n n n
% a®Am = LE: T a®Am2+ L B2 A3
+¢; 2 p{Am, = 2 &fi; T pAm! + = L3 T pg Am; (5.42)

The appropriate differential equation for the displacement vector u is obtained by eliminat-
ing o; from equations (5.41) and (5.42). For static problems with no body force these equations

reduce to
l‘(&,uk_h + l&%ﬂmp + Oj'3= 0 (5.43)
I&}bﬂm + l&zﬁuka& + O'j - l;?},uk‘, - ng)aukp3 =0 (5.44)

Eliminating o; between these equations, we get

IS0y o + K880y aps + B i + TRy a3 — IR0 3 — 1 2puiap33 =0

Ly s + Ikhuy i3 — Iy ks — 1RpU 33 = 0 (5.45)
This is a fourth order partial differential equation for the displacement vector u. The constitutive

coefficients Iig'k’, (r =0,1,2) are already written in expanded forms in Egs. (5.26).

For a composite laminate whose micro-structure is composed of n isotropic layers we use

(5.27) and (5.26) to rewrite (5.45). The result is
8Oy 5 z AyAm, + (8 8y + 885 )0y 5 X Hphm,
1 n n
+ 5 balBiBigueins T ApAm? + BuBip + Bigbyluyips T piAmy]

1 n n
) EnlO;0tk so3 L AAm? + BBy + 8Sp)uy i3 z RepAm?]
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l n n
-3 & 280 ;Bupur op33 Ex AAm; + BouBip + 8upBa)uy ap33 :Ex HpAm?] =0

%i(f-l ApAm; + ,%, HoyAmy) + 5 ,23, HAmy
+ ‘;' Gnlup o3 ;'31 AgAm? + (B3 + U;9g3) él HeyAm/’]
= ';' 8alSai ke ,f-l MoAIm? + (Vg jo3 + Uy 000) é, MepAm?]
- '_:,' E2180up 033 ,;:31 ApAm? + (BipUa agas + U0a33) é_sl HpAm;]
= Ui é, Oy + HopBm; + uj ,Z-, KAy
+ 5 EnlGages = Boisod) 3, oy = o))

1 n n
-3 &2{84;up p33 z [y + Me)Amy +u; 5033 R KeyAm?} =0 (5.46)

There are three partial differential equations of fourth order for displacement vector u and we

can write them in two separate sets, one for j =y and the other for j = 3. For j =y we obtain
n n
Uiy rfl gy + H)Am, +uy ,El HiryAm,
'l§n“3 3 z Oy = HgyAm?
2 3 r=1 ) "

n n
= 3 E3(uppss Oy + HAm? + bygass Z pAm?) =0 (547)

and for j = 3 we get
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n n l a
U B Ay + HAm, + u3 5 I HpAm, + > Gallo a3 I (M)~ Wy)Am?

l n
-3 203, 0033 El HpAm? =0

(5.48)

For the special case where n = 2 these equations reduce to the equations (4.50)-(4.52) derived

before for a bi-laminate composite. From (5.44) we can also calculate o;

0; = 1D s = I8y 1o + L0y p3 = 12p04 aps
which for the isotropic case reduces to
;= (838 ) 21 ApAm, + (83,5; + 83,55 )uy 'f'l HpAm,

- E;— (SOt sr El Ay Am? + (Sey B + SaBpduy i El HeyAm?]

n n
+ % [83;upunps Z MpAm? + (B3p8; + Sy Sipuy g3 z HAm?)

l n n
- 3 &lBodipkeas z MpyAmy + BoxBip + SopBiduraps 2 WpAm]

The equations (5.50) are written in two separate sets. For j =y we get

n gn n
Oy=(uy3 + 03y T WpAm + 57 U35 T [1g) - AplAm?

gn n n
=5 lagy I Oy + HpAme + g T HipAmy)

1 n n
T3 53[%.,(173 E’l (hy + B Am? + Uyaa3 rfl HpAmy]

and for j = 3 we obtain

(5.49)

(5.50)

(5.51)
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Oy =gy B ApAm, +2u33 T pAm,
& n , & n )
=5 Masa+Uya0) T Bplmy + 5 Uaay T ApAm;

- % Q%swrg HgyAm?

(5.52)

For the special case of a laminate with two layer micro-structure (n=2) these equations reduce to

(4.58)-(4.60).
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6.0 THERMOMECHANICAL THEORY OF COMPOSITE LAMINATES

In order to develop a thermo-mechanical theory for the composite laminates, we begin by
writing down the local balance of energy and the Clausius-Duhem inequality for the k®
representative micro-structure. First we introduce the following additional five quantities which

we associate with a motion of the micro-structure:
The specific internal energy €' =¢"(8%,6°® £,1)
The heat flux vector q° = q"(6%,6°® £,¢)
The heat supply or heat absorption r° = r'(8%,6°®) £ 1)
The specific entropy 11° =1°(8™.6°®.£,t) and,

The local temperature 6° = 0°(6%,6°®),E 1) which is assumed to be always positive. The
equation for the local balance of energy — the first law of thermodynamics — can be written in

the following form

pr" - p'e + T‘iin:' -q % =0 6.1

where p° is the density of the micro-structure, q'* and 'y,: are defined by

] [ . ‘e l «®
Q=q"g . % =75 8 (6.2)

and covariant differentiation is performed with repsect to the metric tensor gi; of the micro-

structure. Recalling the relations
g =Vi

g =8 '8 (6.3)

T.i = g.l fzttijgjt
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We can write

L 1 . @ l  J ®
Y%= k=g (i g v e €4

Using (6.3); and the symmetry of 1°J, we can write
;e l LTI 4 L J LT
T ‘}Yij=i(v;.t l"gj +VJ i 4 ‘Jgi)
= -;— (v; g1t v3 g 121%) = g it v.; (6.5)
As for the divergence of the heat flux vector, we have

diva’=q" = =7 €70, (66)

Introducing the results (6.5) and (6.6) in (6.1), we can write the local energy equation in the fol-
lowing alternative form
P’ —pTe + g 12T v} - (g7 41 =0 6.7
The energy equation can also be written in terms of the Helmholtz free energy function defined
by
v =¢"-0q' (6.8)

The Clausius-Duhem inequality as a statement for second law of thermodynamics has the fol-

lowing local form for the representative micro-structure

- ¢ s e LI *124°k
p’e'n’ - p'r' +6°g -lﬂ(Le—jL) 20 (6.9)

By combining (6.9) and (6.1) and using (6.6) we have the inequality
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p'@n =) + Ty, - 31_- %0520 6.10)
which in terms of the Helmholtz frec energy \y‘ defined in (6.8) becomes
'y +1'0%) + 1 - — “‘e_kzo (6.11)

Now for elastic materials the constitutive relations for Helmholtz free energy, the specific

entropy and the stress tensor can be expressed in the following forms

v =y (.0" (6.12)
T 6.13
n 30" (6.13)
e pr
p (6.149)
o
where the partial derivative with respect to the symmetric tensor yi} is understood to have the fol-
lowing symmetric form
1y, v,
2 aYu anx

The constitutive relation for the heat flux vector has the form

-q (lye e,m) (615)

and the response function q“‘ in the light of the Clausius-Duhem inequality is seen to be res-
tricted by the inequality
470320 (6.16)

With the help of (6.13) and (6.14) the energy equation (6.1) is reduced to the following

form
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pr' -q, -p0"n =0 (6.17)
where we have used the definition (6.8) in order to calculate €” in terms of " and then used the
relations (6.13) and (6.14) to further simplify the energy equation. It should be recalled that the
argument of different functions in the energy equation (6.17) is (6%,6°®E,t) and this equation is
written for each and every representative element (k = 1,2,...,n) which repeats itself in our model
and n — . For a bi-laminate representative micro-structure with thickness &, we introduce the
following composite quantities. These relations can be generalized for a mrulti-constituent

micro-structure without any difficulty (see definitions 5.3 and 5.4)

L B
per s [ g el
2 o

(6.18)
gz [ I ] t
g2 [ p’g A"t dE
]
172.i4 1 & 12
|=_ L] .id
gy { g '2q"dE
(6.19)
B,
g'%qP 2= [ g q"E d&
§2 °
-
Pgmn(m)ég—z [P 'EmdE (m=0,1,2) (6.20)

We further assume that the variation of temperature 8° across the micro-structure is a linear
function of &, hence
0°(8%,0°M.E 1) = ,(6%,0°0,1) + £9,(6%,6°0) ) (6.21)

In order to derive the appropriate form of the energy equation for the composite laminate, first

we write (6.17) in the following form
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p'g" V2 - ("1 2g"™), = p"g"n’e" (6.22)

which after using (6.21) reduces to
P8 A" ~ (g™ 2q™) . = 8" N (9 + E01) (6.23)

Now divide (6.23) by &, and integrate with respect to § from O to §,, the result is

lga ..l ® lgz .ln .a ]tt a ‘ln ‘3
EIPB ”rdﬁ—g—zg(s q )adﬁ--g'z‘{sg(s q “)d§
¢o§o- ‘e ¢l§oo’o
=gz‘fps"‘nd§+§—zfps‘”ﬂ§d§ (6.24)

Each term in the above equation can be written in terms of the composite quantities introduced
in (6.18)-(6.20) except the third term which is the difference between the values of g*'2 ¢

above and below the representative element divided by its thickness &,, namely

170
&2 o 9§

Now we assume the existence of the continuous function h(G“.O’.t) which coincides with

ol—-.g'

6"k = - 1871200 - 6@,

q(6%,60°® 1) at 6 =6*®, and further approximate the right side of the above equation as the
gradient of this function multiplied by g in the 6 direction, i.c., (g2 h)/20°. As a result,

(6.24) can be written as

a . .
pg'ar - (9% o - ) (8" b) = pg' (9o, + ¢1M;) (6.25)
In writing (6.25) we have also made use of the balance of mass equation.

Next we multiply (6.23) by &, integrate with respect to & from 0 to €, and divide it by &, to

get
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1 g’ [ 3 ) LJ h [ g‘ a L J ®
g—zljp g g dE - [ & ‘”q"‘),a-jix(s 129"k

& X
=El§ [ 08" 120 E (0, + Ep)E (6:26)

Using integration by part, the third term on the left-hand side of (6.26) can be written as

lgza'm‘s 1 qqg’lbqos 172 o3
E;f"‘a'g‘(‘ a7t = -1he q ]o--gjs PRde =2 (—q°)  (6.27)

which in writing the last term we have used (6.19), and the definition of h given above. Using
this result together with the relations (6.18),, (6.19), and (6.20) we can write (6.26) in the fol-
lowing form

pe'r; - (81%qf) o - 82(b-0%) = pg' (9N, + 617 (6.28)

To determine the appropriate form of constraints on the composite heat flux vectors, first

we write the Clausius-Duhem inequality (6.16) in the following form
g1”q%e1<0
which by (6.21) reduces to

g2 4 00+ 8010 +8125 2, <0 (6.29)

Next we divide (6.29) by &, and integrate with respect to § from 0 to &, which after using (6.19)

can be written as

828000+ 82 4010+ 87§ <0

qa%.a + ‘Iﬁl.a + q3¢l <0 (6.30)
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which is the appropriate form of Clausius-Duhem inequality for the elastic composite laminates.

When the rate of heat supply or absorption is zero (r = r' = 0) the energy equations for the
composite reduce to

€% a%a+ % @2 h) +p g2 (9N, + ®M;) =0 (6.31)

@2 qf)a + 82 (—q*) +p g2 (6N, + O M) =0 (6.32)

For small deformations of composites with initially flat plies the energy equations (6.31) and
(6.32) further reduce to

h . .
Q3+ saa; + PN, + 4N =0

(6.33)
qfa+h-q*+p(d.n, + N =0
where obviously no distinction should be made between contravariant and covariant components

of heat flux vectors.

The derivation of energy equations (6.25)-(6.28) and the Clausius-Duhem inequality (6.30)
for the composite laminates is not affected by the number of layers (or constituents) in the
representative micro-structure. The only necessary modification in the case of a multi-
constituent composite is the replacement of &, by &, in definitions (6.18)-(6.20). Here &, is the
thickness of the representative element which is supposed to consist of n layers. Of course &, is

still supposed to be a very small number.

To recapitulate, for a composite whose micro-structure is composed of n layers with a total

thickness of £, we have the following relations for energy balance and the Clausius-Duhem ine-

quality

or - g 12{(g2q®) , + % &2 b)) = pdgM, + 6,7
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pr +q —h - g2 ) o = p(doN; + O M)

o0+ 010+ %0, 20

where the composite quantities are defined as follows

(6.34)

(6.35)
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7.0 CONSTITUTIVE RELATIONS FOR LINEAR THERMO-ELASTICITY

For a composite laminate whose micro-structure is composed of n layers with different
linear thermo-elastic constituents, we recall the following constitutive equations for the stress

tensor 7 J, entropy 0 and the heat flux vector q°

o) = oy — chy8” .1
(P'N")a) = ¥ + @ )y’ (7.2)
Q) =—k8; (713)

where cji¥, cll, ¢y and ki}) (& = 1,2,...,n) are constants in the associated layers. Moreover, we

have the following symmetries
ol =cf=clf = &
clly=cly .5

Now we proceed to calculate the appropriate constitutive relations for composite stress vec-
tor T*, composite couple stress S%, composite entropy N(m) (m = 0,1,2), and composite heat flux
vectors q' and qf. The contribution of the first part of (7.1) to the constitutive relations for T
and S* ( and consequently 19 and S%) has already been calculated (see section 5). Therefore we
need to find out the effect of the second part of (7.1) in the constitutive relations for T and S*.
Similar to what was done in section 5 we adopt the following definitions for the weighted aver-

ages of various quantities

Lo &
JWij = _g_n j‘ gkc(lgl )d§ (7.6)
1 = *
K® = -§: j' EX(p"c) )l (.7
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S| «
L™= T J §kiydt (7.8)

Now recalling (5.11), (5.12), (6.21) and (7.6) we can write
1"....1,2. ¢°§'.. e
Efc&)e g ljd§=EICé&)s g dt
Iécmg"” 'dﬁ-—I(C‘°zp+c g g2 dg
%‘—Iﬁg‘”(c“’sp +cPg3)dt
1, 17 EA B gy LT 8A . s
=08 " g - [ 1+ 0P +0, 81 gy 7 [ 501+ 300k

& 12
+6,8' g é fa+ %)c"di + %Z

&
&5 i
a{&(n 3g 45
& 1, &
i 1 Tea, BAL gy, 1B 8 B\
+0 8 g g [ §1 e Schh e 5 [ R+ 0c%
= 0o g1 ~(l?(1+5A—)c‘J'd§+ j-‘—?&(1+5"—)c‘”d§1
=0 B gj gn e 2g A-B gn / 2g
+& glfzgJ j§(1+59-)cvdg+x,’, j §2(1+5é)c'5dg}
= 0 g2 g (T + _% J 4 pJ 008 4 2A_g J2iBy)

+6, 8" g+ 1‘2"’ + lp(l‘”'” + 5 J"”")} (7.9)
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By combining the results (7.9) and (5.17) we can obtain the response function for the com-
posite stress vector T. As before if we disregard the factor g!2 8;; what remains is the constitu-
tive relation for 19 which is recorded below
i o (O, A i, g dqisa . B s
i = (I +281< +20 +2gl‘ M
O El"mnﬂa‘ XBla zl‘"”"“')]vc,,,l

- My A g, adgmis, A jous
¢, JC +zgl( +Ag( +ng° ))

—o (i, B Y, i@, A (o
&, (J¢ +2g1‘21+kp(1‘ +ng‘3 )) (7.10)

Similar steps are followed to find the constitutive equations for S* and S%. The contribution of

the thermal term is

&
1 ai o ¢ . . A . : A
T {ﬁc«zse 87 g/dh =008 g I+ T I+ 25004 et

+6,8%g; (Jm“i-»%)(’)“ing(ﬂ”-p%l“’“’)) (7.11)

Again combining (7.11) and (5.20) we find the constitutive relation for S*. Dropping the com-

mon factor gl g; would result in the constitutive relation for S% which is recorded below.
§% =y (10K 4 zAg. 1Ok 4 p gk ?‘g. [Crrkiyy
i . A (o, 3 g0y, A paxwp
+ Ky (T2 4 % IORIP 4 ) (AP 4 oy 1))

- Daj, 8 y2aj adged, A 1308
&, (I J+2g1‘ i 4 Ag0¢ +2gJ(3 )
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- aj, A aj,4iGxb A (4)ab
& (T 4 %8 JOW 4 Ag(IP 4 % Jaby) (7.12)

The next step is to find the constitutive relation for the specific entropies Ny, (m = 0,1,2).
We calculate the contribution of each term of the relation (7.2) separately. By (6.35); we have

&
PE Ny = _E,l: [ p*n"g"1Emat

- &
1 e e . .
= | cdyrjg"EmdE + —l-I (P"c)q)0"g 2™l (7.13)
& o 3
Since g'12 = g2 (1 + %) we can write the first part of (7.13) as

&
. glﬂ -
I c(a)Y,, 12 gmgg = E ‘! Em(1 + %)c(ii‘x)‘Yijdg (7.14)

which by (2.31)-(2.34) reduces to

5"

&n

&
. 172 .
£+ Sty + [ Em1a+ Sl

© tomy i

= g7 (0™ 4 % JED] 4 g8 zAg_J(mz)ip]l (71.15)
The second part of (7.13), by (6.21) and (7.7), is written as

l ; [ ] [ ] tln m -ﬁ; m E‘ *
T [ (P )" g2 EmdE = 3 j 871+ 500 ) adl

ink

Jeras SA)(,, O

_ %8
&

12 &
¢§“ femas -E‘A—)(p O
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= ¢° gln [K(m)

+ —2“; K™D} + ¢, g!? (K™ 4 % K™}  (7.16)

Substituting (7.15) and (7.16) in (7.13) we obtain

pgm'l‘](m) = glﬂ {Yij(l(m)ij + % J(mlﬁj)} + gm xip(](mﬂip + EAS_ ](m+2)ip)

A A
+0, glﬂ (K(m) + Eg K(m-bl)) +6, glﬂ (K(m+l) + 2_g K(m+2))

_ A 1 a2 A i
PMm) = Y,j(J‘""" + Z Jm+Dlijy 4 ,%(J(n&l)nﬂ + -Z—g— Jim+2)iB)

+ 0o (K™ + -295 K@) 4 ¢, (K™D + % K™ @=012) (117

We start with (6.35), to find the constitutive relation for q'. Substituting from (7.3) in (6.35), we

get
12, IL 17,.% l&‘z 17
'=— [ g% e =- = [ g"1Rk})0;d
g'?q é,.{g qidE gn!s kehy9;48
s E o .
=-E— [ (14 2Z2)aPej + K03)dE (7.18)
& o 2g '
By (6.21)
85 =00p+E01 5 (1.19)
83=9, (1.20)
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Noting these results we simplify (7.18). Hence

1

s
#7d=-%~[a+ %)k"(m + &0, )E
P BA B3
& '!(l+2g) ¢,dg
L L
--g‘”{%]m%w"a& -Eljg(1+55)rﬂd§
) = EA i
+E fa+ %8 kSdE ) (7.21)

Using (7.8) we get

. a A . ) A X
B2 q == g7 (0oglLO® + - LOP 4 4, LOP 4 LD

+o,[LOB, A i
¢,[L 2gL 1}

. . A . . A .
qi=- LB, EE ]_'(l)lﬁ)%'B - LB E.g_ L(Z)IB»LB

. A .
- (L(0)13 + E ]‘(1)13).1)l (7.22)

Finally we use (6.35)5 to derive the constitutive equation for qf*. Similar to the above develop-

ment, we write

1”2 1 . ) 1 . 1n
o= [ g*12q%E gk =— — [ & g*12}%g3d
g q gn !g q g § §n {gg J g
T LB
- 35,—‘ fea+ = )P0 + k03)dE
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ﬁt&l 58 11800 5 + Eg p)IE 1’5&:1 5A 3y g .23
=— + + - X
£ [ 80+ 3K p + Lo pdh - B [ R+ 20k, )
which by (7.8) reduces to
ao_qWoBy B 1@y _q@aB, A 100by  _qm3, 4 ;2
q; =—(L + % L )¢°‘p (¢ + 28 L »l.b (L + 2 L ¥ (7.24)

This concludes our derivation of linear thermo-elastic constitutive relations for composite lam-

inates.

For small deformations of a composite with initially flat plies the foregoing equations are

simplified to the following constitutive relations:

;= I s + I, 00 - 308, - 3V, (7.25)

Saj = i s+ 13hus 3 - I8, - I8, (7.26)

PN(my = I§™u; 5+ T Du; g3 + K™, + K™ g, (m=0,1,2) (7.27)
6= L5 — L’ s - L0, (7.28)

qft == L%Pg, g - L@bBg, 5 - L3y, (7.29)

The constitutive coefficients I'?, I') and I® have already been calculated and recorded in equa-
tions (5.26). As for the other constitutive coefficients we use the results of section 5. Compar-

ing definitions (7.6)-(7.8) with (5.8) and using the results (5.4) and (5.30) we can write

o = ET & 2 z: ch Ams* (7.30)
K® = ET E,,',‘ ): (p°c)gyAmH! (7.31)
L& = k+ : g: z k(J,Am,m (7.32)
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It should be noted that k(‘g) in equation (7.32) are the coefficients of thermal conductivity of dif-
ferent layers of the representative micro-structure and are not to be confused with the superscript

k which assumes non-negative integer values.

If the micro-structure is composed af isotropic layers, the coefficients of thermal stress c(";i)
and thermal conductivity k) can be written in terms of only one constant for each layer. For

such case we write

o) = Byd; (7.33)

ke = kB (7.34)

Taking note of these relations and relations (7.30) and (7.32) we obtain
) n
IV =8 rfl ByAm,

iW=Les 2 poAm?

Sy Eu5;j z BiryAm;

@-Le2s ¥ 3
Jij = ? gn ij =1 ﬂ(r)Amr (7.35)
o_Lleg 5 .
=gt j 2 BiryAm,

n
L{"=3; rfl keyAm,

l n
LiSD:'i' 5. X k(r)Amr2

Y r=1

(7.36)
1 2 3
Ligz) = ; gr?&g rEl k(1')Amt
Consequently the constitutive equations (7.25)-(7.29) reduce
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‘ii=5ij§,0v)m-ﬁm¢omm:+(“u+up),§luum
+ % ﬁnﬁaj,f:, (Ara.as — Byydr)Am?

+5§ <°wsja+°m5u>,§ MpAm? (7.37)

Soj= 3 8 5 s~ BoOhn? + s+ w30) T pyhm?)

* % gz(saj !EI o(r)“ﬂ.& = B(r)¢l)Am,3

n
+ Giglaps + tja3 B pAmy) (7.38)

o= Z (B + @ c)dolAm,

% §n 2 [B(r)uB.BS + (P C)y01)Am (7.39)

Py = % & T [Boyis + (P 0)gydlAm?

+ ‘:1; g2 '_5 [Biyupps + (P°C)yd1]Am (7.40)

PNy = % & Z [Beyuis + (0C)holAm,

+%§3,§1 [Bioup.ps + (p')yprlAmy (7.41)
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Ga=-tua T KoAm, - 2 &t o I kAm? (.42

B=-d 5‘-1 kiyAm, (7.43)
1 n 1 a

qf' == 3 Gaboa T kpAm? = 381014 T kpAm; (7.44)

In relation (7.44), a is written as a superscript only for convenience and does not signify the con-

travariant position.

The linear equations of motion and balance of energy for a composite with initially flat
plies are derived by substituting (7.25)-(7.29) in (2.123), (2.124) and (6.33). Using the results
(5.41) and (5.42) in conjunction with (7.25) and (7.26) we have the following equations of

motion in linear thermo-elastic theory
n

1R ko + 5ht0p3 = 35000 = 35010 + b 2 p(7 Amy + o)

=i T 0PAm + LE i T 0®Am?2 45

‘ujglpoAmr 2§nuj.3,=lpoAmx (7.45)
Iy o + 1hu;0p3 — I 00,0 = T30y 0 + 0 - Ky

n
- Ig%ul'p3 + Ji? )¢° + Jéjl )¢l + Cj rEl pgr)Am,

1,. 2 1 ,9. 2
= 2 &l Z pAmy + = £ £ pAm? (7.46)

The energy equations when the rate of heat supply or absorption is zero are recorded in relations
(6.33) for small deformations of thenﬁo—elastic composites with initially flat plies. Substituting
the constitutive relations (7.27)-(7.29) in (6.33) we find the following coupled differential equa-
tions for displacement and temperature fields
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@I+ 1M + @ JIF + 0130 g3 + (0K + 9K De,
+(¢°K<"+¢1K"’>¢1+ - L0008 — LP01.08 - L& 0 =0 (1.47)

@I + 0,30+ OJF + 013N g3 + O KD + 0K,
+ (@K? + K¢, +h + lfjg)%.p +L{Pép+ L{D¢,

- L 000p = LG 08 — LG 4 =0 (7.48)

For static problems in the absence of body force and heat supply, the foregoing equations
are further reduced to

1R s+ IBu1p30 — I D000 = 101 5+ 053 =0 (7.49)

I i+ 1hus0ps = I8 00.0 = J01 0 + 05— KRy

= husps + 10, + 340, =0 (7.50)
- L0003 - LBO1 05 - LY 0 =0 (1.51)
h+L{P6os + L g + L{Pe; - LK bo,05 - 1«%’% s~ L& o=0 (7.52)

Similar to what was done previously in order to find a relation between the director dis-
placement and :he gradient of displacement vector, we enforce the continuity of the temperature
ficld across two adjacent micro-structures to derive an analogous relation between ¢, and ¢,
defined in equation (6.21). In order that the temperature field be continuous on the common sur-

face between k¥ and (k+1)™ micro-structures we should have

0'(8%0°%*D,0,) = 0°(6%,6°™,E 1) (7.53)

Now by (6.21) we have

BASE




7-12
0°(6%,6°%*),0,1) = ¢,(6%,6°1) 1) (7.54)
0°(6%,0°® E..0) = 6,(0%.6°%,0) + £9,(6%6°®,0) (7.55)

Substituting from (7.54) and (7.55) in (7.53) we get

602,81 1) = ¢,(6%,6°%,1) + £,9,(0%.6°®0)

¢,(e“.e”‘>.t)=-§‘: (0,(6%,6°+D,0) - ¢,(6%,6%0),0)) (7.56)

By smoothing assumptions and noting the smallness of &, we approximate the right-hand side of
(7.56) as the gradient of ¢, in the 6° direction. So we obtain

¢l(euvesvt) = 32_3' ¢o(9u'93’t) (7.57)

This conclusion is used in various field equations. In particular, equation (7.49)-(7.52) reduce to
IR0 ko + IR0 = I 00,0 — I 00,03+ 0j3 =0 (7.58)

1200 10+ 101083 — I 00,0 ~ TP 00,03 + 05— LD

= I, g3 + 1§00, + 3Pg5 =0 (1.59)
h;- L&?ﬂ%.ub - L&?%.aas - LP003=0 (7.60)

h+L{Poos + LiPo0ps + 1003 - LiPb0p - LiBboags ~L0a3 =0 (761)
Eliminating o; between (7.58) and (7.59), and h between (7.60) and (7.61) we find the following
coupled differential equations for displacement and temperature fields. Since we are investigat-
ing the static problems in the present derivation the equation for temperature, i.e., the equation

resulting from the energy equations is independent of the displacement field. Recalling (5.45),
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the displacement equation becomes
1&“&5 + li%“upa - &“xm - Igia“uaas

- J‘(:?)Qo'i - Ji(,l)%'g + Jg)%m + Jg)%.ﬂ3 =0 (1.62)

and the temperature equation by (7.60) and (7.61) is

L§"00;;+ A4 - L& Mo033 ~ Lég00.0p33 =0 (7.63)

Having determined the displacement and the temperature fields, the interlaminar stresses o; and
heat flux h can be determined from (7.59) and (7.61), respectively. The results are

0= 1 + 1 ps — L — Ipusas

+ 1000 5+ I00,03 - 3P0 - 1§05 (7.64)

h = L0 ap + LéP0.ap3 + L0003 — LED00 o ~ LiD00.a3 — LI035

= L{§00.08 + L 0.3 + L& - LiMo a3 - LPto; (7.65)
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8.0 LINEAR THEORY OF INITIALLY CYLINDRICAL LAMINATES

For an initially cylindrical laminate, we choose the usual cylindrical coordinates (r,8,z)
which are related to the coordinates (6',6%,6°) according to the following relations

0'=0 , 62=z , @®=r 8.1

The choice of coordinate r for 6° direction is natural, since the cylindrical laminates are piled up
in r direction. The metric tensor Gj; and its conjugate Giand G = det(G;;) are given by the fol-

lowing relations

00 7 00
Gyp=|0 10 , GH=j0 10 (8.2)
001 0 01
G= dCt(Gij) = !2 (8'3)

Since we are working within the realm of linear theory, the reference metric tensor Gj; is
appropriate for calculating the covariant derivatives of various quantities. We further recall if v;

and Tj; are covariant components of arbitrary vectors and tensors, their physical components

V4, and Tg;;, are given by
Voo = L . Td.i, = ——I"—— (no sum) 8.4)
\/Gﬁ \/Gﬁ\JGﬁ

and in terms of covariant components

Var=VIVG; , T =TIVG; VG (no sum) (8.5)

For the cylindrical coordinates defined in (8.1), the non-vanishing Christoffel symbols of first

and second kind are as follows:

[13,1]=[31,1]=r , [11,3]=~1 (8.6)
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’ (]31}=—r (8-7)

" e

G'ad=G')=

For the subsequent analysis we also need an expression for the quantity A defined in (2.14):

2r 00 200
A=10 10|+]0 00|=2r (8.8)
0 r1 0 01

This quantity relates the determinants of the metric tensors of micro- and macro-structures
through relation (2.13).

8.1 Relative Kinematic Measures

The relative kinematic measures ¥; and X, were given by (2.118) which for cylindrical
coordinates since Dy = Gg3 = 0, by (2.103) and (8.2), are simplified to

Y.j-'— ‘% (u“j+uj,i) 8.9

Xop = Adjia+ Sip » K3a=831q (8.10)

In writing the above relations, we have also used the resuts (4.22) and (2.30) while noting in
cylindrical coordinates we can write

A3=(33u]’0

By straightforward calculations, covariant derivatives of displacement vector u and director dis-
placement & are found and substituted in (8.9) and (8.10) in order to obtain the covariant com-
ponents of the relative kinematic measures. These results together with physical components of

each tensor are recorded below:

du,

u,
711=‘§+m3 v Yoo = —

T

2,

- |-
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1,04  du _1 g 10y
LA R A e T
1O Gu w1 e 1w u
Wy gt R T e G T e T
du, du,
Lol @12
_ 1 ,0u; du _1 0y oy
W% R G
du
?33=-a_3' ' er:%
1 1
K= o () + oy m=;§;(r%)+;,—§r-(m,)
_ 9 9y _32“9
]
19y, _ 1 ,0uy A,
2 T 5 e T & e
3, &,
== K= (8.13)
K =22u_3_ﬂ -L(izu'__.ai)
N %r r r 96 ar
oy Py

The equation for balance of mass is also obtained by using (2.121) and (2.122). The result is as

follows

PPt et T

1 Oug v, aur+ur
or
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(8.149)

1 Oug
P‘Po(l°_r' 20

W Sy
o  or

r

8.2 Linearized field equations

These equations have already been derived for a general composite laminate and are
recorded in (2.123)-(2.125). In cylindrical coordinates and in terms of physical components of
different tensors, these equations are reduced to the following forms

30 -
= "aTo' + Pobe = Po(iig + 2189)

dc, w
-:- + + = == + Pob, = p,(li, + 2'3,) (8.15)

30' 1
= =+ pb, = Py + 2'8)

and

| 3 . Su O
— e+ = b = — 1+ Pty = Po(2lilg + 270p)

r

1 ast as,z o, =
T3 TS T et P =R i, + 2%5,) (8.16)

13So. sz  See
e +—-t.,+poc, Pol(atiiy + 228,)

and

To= o=+ So @.17)
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=1Ta
As noted carlier in (1.125) the composite stress t¥ is not in general symmetric and in particular
in cylindrical coordinates the asymmetry is represented by equations (8.17).

8.3 Constitutive relations

We assume that the representative micro-structure of the initially cylindrical composite is
composed of n layers with different linear constitution. The results developed in section 5 are
used to derive the appropriate constitutive relations. For the present case it is noted that

A

1
G- (8.18)

and the only non-vanishing component of AA by noting (8.7) is

Al=(')) =-:- (8.19)

Using these results, we simplify (5.18) and (5.21) and derive the following contravariant forms

for the constitutive relations in cylindrical coordinates

il _ qOil . 2 i, 1 v hite , 2 y2jite , 1 @it
1l = (¢ +rx< +l_21(2 M + (K +r1(2 +l_21(3 i (8.20)

2= O L By @24 L p@R20y @21)

2 = OB, _:_ QL LN .:_ @iy, (8.22)

§o1 = (Dl _3_ [k % ORIk 4 (D018, % [Gaib _!1? T4R1Bycy (8.23)
5%2= 02y L @y | @028 4 L fORAyc (8.24)
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§93 = (phask .:_ [@Skyy 4 AP % ﬂm)xm (8.25)

where the covariant components of the relative kinematic measures ¥;; and K, have already been
recorded in (8.12). The composite constitutive coefficients J®P¥* depend on the material
behavior of every constituent of the composite laminte. For the special case where the micro-
structure is composed of n isotropic layers with different elastic constants, we can write

CEF™ = 1, GPG™ + 1 (GFG* + GGT) (8.26)

where A;) and i, (I = 1,...,n) are the Lame’s constants of each layer in the micro-structure. By

(8.2) the non-vanishing constitutive coefficients are as follows:
cm=Las,
A (A +2)

CllZ’Z -

>

Cl 133

|

C22=)+2u
C2B =), (8.27)

C3¥B¥=p+2n

C23?3= m

1313_ W
=g

1212_ B
=z

where subscript (/) is dropped for simplicity. It should be recalled that following symmetries of
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the constitutive coefficients must be remembered when the expressions involving the constitu-
tive coefficients are expanded

C¥ = O = CUk = i (8.28)

By (5.9) the non-zero components of the composite constitutive coefficients have the same
superscript as (8.27). Substituting from (8.27) in (5.9) and using the results in (8.20)-(8.25) we
find the following constitutive relations for the physical components of the composite stresses
and composite stress couples. The summations in these relations extend over the micro-structure
from/=1tol=n

2
tee=‘yooz(k+2u,)(Am,+%;Am, +§:—2—Am,)

2
O+ WIE M+ 2 AP 4 35:, am)

2 3
"‘"eeZW"‘WinAml +-23&-Am, +'%;'Am )

&

& L 4
S5 Am? +-Z Amf) (8.29)

+xnzl,(TAmlz

_ &n g2
ta—ZY,eEuz(Amﬁ-r—Am: +-5—Am,)+(x,g (8.30)

2 3
+GIE T Am+ 2 Amp+ 2 A

& &a

To=2Ye L U(Am + — Am + 5.7 Ami) (831)

2 3
+no2u:(%Amz’ %—Amﬁ%mz)
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- g‘ 2 g" 2 gz 3
To: = 2Ye; T WAAmy + o= Am/) + (Koo + Kgo) T HAS- Amy' + = Amy) (8.32)
T2 = Yog"imL MAm—ii AmPD) + 7, T O + 24} Am; + %Amﬁ) (8.33)
2 2
+KooElx(%Amf & Am:’)+'<u20-z+2w)(-§'4Amf g, Am?)
2
tn=21u2uz(Am:+%Am.’)+nz2u:(52‘4Amf §"Aum’) (8.34)
2
‘&=27&ZNKAm1+EAm)+K.oZM-iAm,2+-§lAm) (8.35)
- §,. 3 5“ 2 . 3
tu"zYnzuI(Aml""zTAml)"'xuzul(TAml+¥Aml) (8.36)
- gﬂ 2 gl 2
tn—(YOG‘Wuﬂn)zll(Aml"'-z;Aml)"’zYﬂzw(Aml"'?;Aml) (8.37)
2
+(ree+xu)27~:(% Amf + g“ Am?)
sw=§ny“z(x,+zu,)(% Am}+%§,,Am?+;l?§3Am,‘) (8.38)
+ Bl E MG Amf+ - 6 A+ 5 £ Am)
13,1 4, 1 g2, 5
+Eakoo T Ot 2005 Amf + 5= By Ami+ —7 £7 Am)
+ 8 T (5 Am] + - & amit+ 5 62 Am)
%, 5 5 2
Sp= ZE:nYOzZW(—AmI"'TAm +;—Am,)+§.,(xe, (8.39)
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89
+eDEu] Ampe 2 amis i oo

Sez =2V &.}.‘.m(-;- Amf + % Am?) + E2 (X, (8.40)
+RDE I A+ 2 A

su=6.vnz;a,+2u,x§ Am?+%Am,’) (8.41)

+§3xuzm+2uzx§Am?+%Am,‘)

&

S = 260 Yo E M A2+ 22 ) + 2 i E i A + 2

a4
2 Amp) (8.42)

&

& 4
3 2 Ami) (8.43)

S =20 s E by AP+ 22 Am) + 82 5, T 3 A +

Using (5.33), (5.36) and (5.37), the composite mass density p, and the composite mass
moments pyz! and p, 2> which appear in the equations of motion are also calculated for an ini-
tially cylindrical laminate

Po=X PogAm; + = 2‘, PopAm? (8.44)
§n
== ﬁn ¥ PopAm/ + = P> PopAm; (8.45)
_1:2 3. & |
PoZ? = 3 o ZPopAmy + = X PogyAm/* (8.46)
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8.4 Energy equations and constitutive relations in linear thermoelasticity

Energy equations (6.34), , in the absence of heat supply or heat absorption reduce to the
following forms when written in the cylindrical coordinates (8.1)

1 9Q9 09, 1 3rh) . o
T ® TR T > + PG + M) =0 (8.47)
1 99y = 9qy, . "\
T 9 T3 +h-g, +p,(ON; + M) =0 (8.48)

where gg,q,,q, are the physical components of heat flux vector for the component laminate;
q0.q), are the physical components of the composite heat flux moment, and other quantities
have the same meaning as section 6. The constitutive relations for various composite quantities
in thermoelasticity can be written with reference to the development in section 7. The mechani-
cal parts of the constitutive equations for composite stress and stress moments were derived in
section 8.3. Therefore in what follows we record the thermal contributions to these quantities.
The complete constitutive relations in thermo-mechanical theory is obviously obtained by super-

imposing these distinct parts.

From (7.10) we have
vithermal) =~ (10 -1 JWi 4 AJ B o 2 yiB)) (8.49)

—o (qWii e L @iy 9 (g, 1 3B
O (T 4 — S 4 33 GBP 4 — JOBy)

Using (8.19) this reduces to
ol =g, 10+ 2 Jo 4 5 D) -y (1 4 2 yon 4 % o) (8.50)

2=, (102 4 % JR2) — @, [31E2 4 % Ji2) (8.51)

BASE




811
= 4,000 + -}- JO2) - ¢, 15 4 % J&%) (8.52)

where the word thermal is dropped for brevity. Similarly from (7.12) we find the thermal contri-

butions to stress moments as follows:
gol =_¢°u(lﬂl + % JPat ;!z_ ](3)!1] _¢1{1(2)¢1 + % J@al 4 ;12_ ’(4)01) (8.53)
5% = 4,02 + L yo2) _ g 2 4 1 02y (8.54)

§% = —¢ (IS 4 % J)3) _ ¢ [JOIO _:. 1o (8.55)

The constitutive relations for composite entropy and its moments T, heat flux vector q and its
moment q; are also derived from equations (7.17), (7.22) and (7.24). Using (8.18) we have

Pl =731 + % JEDif] 4 g[8 4 .:_ Jime2)iBy

1

+ K™+ L K@) 4 K@+ L k) @=0,12) (8.56)

qi =— [L(O)iB + -ll’- L(l)iﬂno 8- [L(l)iﬂ + % 1(2)'3]4, 18- [L(O)i3 + % L(li:"]% (8.57)
qft=-[LP + % L0, - LD + % LORg, o

L % L@ (8.58)
where the thermal constitutive coefficients J®H K® and L®¥ for the composite laminate are
given in (7.6)-(7.2) and calculated in expanded form in (7.30)-(7.32).

If the micro-structure is composed of isotropic layers the coefficients of thermal stress and
thermal conductivity of each layer can be represented in terms of only one constant. For the
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present case of cylindrical laminates we can write

C§=G%By (=1,..0) (8.59)
ki) =Gk, (8.60)

Substituting from (8.59) and (8.60) in (7.30) and (7.32) we have
J(k)ll = m ;/12 z b ')Amlk'H (8.61)
]ﬁm ](k)33 = m g: 2 B I)Am'k+l (8.62)

1 &

L0 = —— Ep> kgAmK*! (8.63)
L®2 = L% = L EE S kpAm]*! (8.64)

These are the only non-vanishing components of the composite thermal coefficients and K®'s
are scalar quantities independent of the coordinate system. Substituting from (8.61) and (8.62)
in (8.50)-(8.55) we get the following contributions to the thermal parts of the composite stress

tensors and moments:
_ & & s
Too(thermal) = 4, . BfAm, + = Amf + %5 Am)
2 3

% XB (%' Am? + —23§i Am} + % Amp) (8.65)
T5(thermal) = ¢ g(thermal) =0 (8.66)
To,(thermal) = T, (thermal) =0 (8.67)
To(thermal) = 1,,(thermal) =0 (8.68)
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G

813
%(W>=Mw)=-02ﬂxm+%m’)
-4 ZB:(%- Am{ + ;z 5 Am?) (8.69)
Seo(thamal)=-%2l3:(52-"m:’ Z — Am}’ + el Am,‘)
- 25:(5? N A@‘ & Am;’) (8.70)
Sz (thermal) = - ¢, 3 B:(% Am] + g"z 5 Am)
X Bl('g‘i g“s - Amd) (8.71)

The thermal contributions to other components of S is zero. As for the entropy and its moments,
heat flux and its moment, we substitute from (8.61)-(8.64) in (8.56)-(8.58) and get the following

results

PoNo) = (Yoo + Yz + Vo) 2, B(Am; + % Aml2 )

2
+(ree+nn)):9:(EAm:’+E’-Am)

& & 53

+0, T GOAm, + = AmP) + ; T (pO)(—- Amf + == Am?)  (872)

2
pon(l) = (‘Yﬂ +Y t+ Tn)z Bl(%' Am‘l2 gn Amls)
2 3
+(Xga + ¥)T Bz(i g,, - Am)
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; 2
+4 ztpc).(—Am?+—Am.‘)

8, 3.5

Poﬂ(z)'('ho*Yn""Yu)ZBt(— Am,‘)
&3 4
+ (Koo + %) T B~ Am}! +;Am.’)
3
+9, 2(pc»(§" Am} + g“ + Am)
gs 4
+ T Am} + r Am})
2
qo=-%%2k:(Am;+ = Am?) - ; 1 o zk,(; Am} + g,, Am,’)
2
qz=-%°-}:k:(Am:+?§"r—'Am?)- ?z‘ zk,(E“—Am,%%‘;Am,-")
- &, 2
--hZh(Amﬁ;;Ama)
2 3
‘ho="- 1L X ZkKEAm? g,, Am?)— 1 % z‘k,(g" Am} + & Am,‘)
2 3
Qi =~ ?: zk.(i'# g" 3 Amd)- == il }:k:(g“ Am; + g" & Amih)

(8.73)

(8.74)

(8.75)

(8.76)

(8.77)

(8.78)

(8.79)

It is worthwhile to recall that in the above relations, ¢, is the gradient of ¢, in 63 = r-direction.
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9.0 LINEAR THEORY OF INITIALLY SPHERICAL LAMINATES

For an initially spherical laminate, we choose the usual spherical coordinates (r,¢.8) which
are related to the coordinates (6',6%,6%) according to the following relations

0o'=¢ , ¥=0 , &*=r ©9.1)

The choice of coordinate r for 6° direction is natural, since here similar to the cylindrical case,
the spherical laminates are piled up in the r direction. The metric tensor G;; and its conjugate GY
and G = det(G;;) are given by the following relations

(Gij) = [

For the spherical coordinates defined in (9.1), the non-vanishing Christoffel symbols of first

oo,
o

) . m> 0 _ o0
Psin¢ ?] , G‘J)=[ 8 1/:23in2¢ (l)] 9.2)

o5

G =det(Gy) =r*sin’ ¢ 9.3)

and second kind are as follows

(12.2]=(21,2] =

N'—-

(13,1]=[311]=
(94)
[23,2] = [32,2]

2|

9Gy,
— =6’sin? 0! =rsin?
%0 ¢

(22,1]=--;--a—;321=-(e3)2sinel cos 8! = -2 sin ¢ cos ¢
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(3 ) =8 =-r

(1220=(22 ) =cot@' =cot ¢

" |

(113)=(1311=$=

LR

(22)= 23 = o5 =

(2! 2) =—sin ¢ B'cos 6! = —sin ¢ cos ¢

(23 3) = —%in%0! =1 5in%

From (9.2) and (2.14) we find the following expression for A

2r 0 0 £ 0_ o]
A=| 0 r’sin®% 0| +| 0 2rsin% 0| = 4rsin%
0 0 1 0 0 1

9.1 Relative Kinematic Measures

The relative kinematic measures *; were given by (2.118), , 4, and since D,

by (2.103) and (9.2) — and §; = u;;3 — by (4.22) — we can write

1
%= 5 W+ ;)

By (2.14) and (9.5) the non-vanishing components of Aj are

Al=A}=

-tln—

As a result we have the following expressions for x;, given in (2.118), 3

1
Kap = T Ugia+Oq1p

9.5)

9.6)

=GGS=0'_

9.7

(9.8)

9.9)
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K3a = 83q

The components of director displacement §; by (4.22) and (9.5) are

80=“u.3"':,'“u
(9.10)
S3=u33

Now we proceed to calculate the covariant components of ¥; in terms of the covariant com-
ponents of the displacement vector u and its partial derivatives. From (9.7) we can write

1
=5 @+ ud - G5 v ©.11)
Using (9.3) we get
Y1= Yy, + 10,

' 1
T2=7 (U2 +uy;)—cotdu,

1 1
N3= 3(“1.3 +u3;) - 7w
(9.12)

yn=uu+sin¢cos¢ul+rsinz¢u3

1 1
123'—’?(112'3"‘113'1)-?“2

Bi=u33

These results can be written in terms of the physical components by using (8.4) and (9.2). The
appropriate expressions after simplificiation are as follows

Yn=%‘(%+“:)
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(9.13)

The relations for Kap and X,, given in (9.9), after using (9.10) are reduced to

"ua=':' (Up.a‘“mb)“':? (3% o) u+ va3p— (o™ p) U3+ (a ™) (" 3}

Ksa=Us3a~ (35} s+ (35a) (193}

In expanded form these relations are simplified to
tll=“3+“l.31 +m3_3

1
Kj2= '}' (02'1-012) + U3~ cot ¢ Uz3

-1
K31 = -l'- (ul.z-llz'l)'*llz}l -¢0t¢u2'3
' 9.14)
Ky, = $in ¢ U3 + Uy 35 + 5in ¢ cOs G uy 3+ rsin%P uy 3

_ 1 1
K31 =U33; — T 3 + :{ Uy

1 1
“32=“3.32‘?“2.3"‘?“2
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Using (8.4) and (9.2), we can write the physical components of these relative kinematic meas-
ures. The results after simplification are as follows

_1 g 1 Py corg e
X0=2 3¢ T Tsing o0 r or
__ 1 du 1% cotd
" Pine 9 T o g °
(9.15)
1 9 1 Oug
"ee='r7§;[r(u;+°0t¢u¢+‘—¢'¥)]
1 9 oy
%= or (3 W
19,1 Oy

The equations for balance of mass are also obtained by substituting covariant derivatives of dis-
placement vector in spherical coordinates in the expressions (2.121) and (2.122). The simplified
results in terms of physical components of the displacement vector and its derivatives are as fol-

lows:

a1, 1% 1 Ou
po-p(l+r a¢+rsin¢ ae+

(9.16)

ou,
or
= 1 duy 1 Oup O cotd
P=poll -7 o rsing 08 or
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9.2 Linearized field equations

In order to derive these equations, it is sufficient to substitute from (9.3) and (9.5) in
(2.123)-(2.125). The results after simplficiation are written in terms of the physical components
of various tensors by using (9.3) and are recorded below.

Balance of linear momentum:

19 . 1_ 9%  Te _ cotd 1 0
rsiné 3¢Gm¢w+ rsing 00 S r et rsin¢ Or * Pobe

= po(i.i. +2! 5‘)

1% 1 % % 1
r %

Tor | cotd 90,
Tsng 09 + . + . (Teo + Tgp) + rzsintb Fm + Pobe
= p,(ilg + z'Bg) ©.17)

1 9 1%1¢¢+¢eo+13°x

rsin¢ 3z(sm”")"'rsimlb ® Psing Or *Po
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Balance of director momentum:
3& Sw _ cotd S _
rsxn¢ a¢(sm¢s¢‘) 20 + T T Seo + l‘zst To +PoCe
=p°(z‘ﬁ,+zzs‘)
1950 1 Ose cotQ G
A T M e M P
= p,(2liig + 225p) (9.18)
1 J . 1 Ose Seo O,
rsin ¢ -BT(sm¢s“)+rsin¢ ® +r2;in¢-t"+p°c'
=p°(z‘i,+22§,)
Balance of moment of momentum:
1
o0~ Too = (Sag—S0)
‘lt'tor=',l.' Sor (9.19)

1
t.o-fo.=—r'ser

Here again as in cylindrical coordinates, the composite stress tensor tJ is not symmetric and the

asymmetry is represented in equations (9.19).
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9.3 Constitutive relations

We follow exactly the same procedure as in Section 8.3. For quantities in spherical coordi-
nates, by (9.6) and (9.3), we get

A _4rsin’ _2
2G 2sin% r

(9.20)

and by (9.8)

1
A11=A22=?

Using these results in (5.18) and (5.21) we obtain the following contravariant forms of the con-
stitutive relations in spherical coordinates. These constitutive equations are obviously written

for a purely mechanical theory.

i _ Okl | 3 f(iyoxs | 2 ye2 yesp . 3 2y, 2 (BB
% = [1O% +r1“"°”+r21‘2"“”}yk,+n“ +r1‘2 +l_21<3 Ixg 9:21)

=000 4 2 oy, | ey 2 sy, ©22)
59 = g 3. yoon, % 100By, 4 120BY+ 2 Ol ;12- 1P, 9.23)
§9 = [k % NC) LU % P (9.24)

The covariant components of the relative kinematic measures ¥; and x;, were calculated and are
recorded in (9.12) and (9.14). The composite constitutive coefficients I™P¥* depend on the con-
stitution of the laminates. For the special case where the micro-structure is composed of n iso-

tropic layers with different elastic constants we have

ern = X‘DGNG" + HD(GFG‘I' + G”qu)
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(=1.,..n)

where A, and ;) arc the Lame constants of each layer in the micro-structure. By (9.2), the

non-vanishing constitutive coefficients are

= Que2unt
CH2 = ) sin%
Cl13 =yt
C22 = +2p)irsin'y
C23 = \rsin (9.25)
CB3B 42
C33 = u/sin
CBB - 2

C1212 - iy

where the subscript (f) is dropped for brevity. Of course, the symmetries of the constitutive
coefficients C as expressed in (8.28) must be recalled when the expressions involving the con-
stitutive coefficients are to be expanded. Substituting from (9.25) in (5.9) and using the results
in (9.21)-(9.24) we find the following constitutive relations for the physical components of the
composite stresses and composite couples. The summations in these relations extend over the

micro-structure from/=1to/=n.

2
Too = Yoo T (As + 241)(Am; + ‘2% Amf + 23 Amp)
2
+ (Yoo V) X A(Am,; + -2%' Am? + —i% Amp)
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2 3
+r~zar+2u.x%m’ g" i‘;Am,‘)
3
+sz5;-Am?+%Am?+iAm)
- 2. %, o %2,
"¢o—2‘i¢ozuz(Aml+‘;Am:+;_{Amt)
g" 2 & 3 4
+ (kygt¥oy) T H(5- Am + Am¢+-2;;Am,)

2
1,,=2y,zu,(Am,+%Am,2)+x,,zu,(%4 Am,2+-3r—Am?)

Tog = Te0

= 3;‘ 2 : 3
tee—(‘i¢¢+’\(,,)2;7.,(Am,+—2—r-Am, +-3—r2-Am,)

3 2
+Y00 X (hrt2i)(Am; + —;’r-i Amf + =5 Am])

&

3
+“¢02M7Am12+& &

5 Am’+ r*) =% Am})

& &
+K992(Xl+2pu\—Am, +_Am’ +;2—-Am )

Tor = 2V 3, HAAm; + -F”; Amp)

2
+ne2:u:(5Amf 2§"Aml) |

(9.26)

{9.27)

(9.28)

(9.29)

(9.30)

(9.51)

BASE




—

9-11

X 28

t..=zv..):m<Am,+3-Am? Am?)

&

& — Am} + — Am})) 9.32)
P*)

+n¢}:m<52"—Amf

3K 2%

Yo = 2o L HAAm + = Am? + 5 Am)

b 53 -

+ %o T i Am + 7 Am) ©3%

o=+ T E Ay + 2 )

+ % T O 20)(Am; + % Amf)

2
+ (Kog+¥g0) T l,(-Eﬂ Am? + 5— Am}) (9.34)

& 5 f..?

St =oe T (i 2u,(5- Bmf + =~ Am] + =% Amf)

& &a

+ Ooat¥) TS Am? + — Am} + yo Am:‘)

é.?

3
§,. — Am}+ = Am})

& 3.,
+ Xy T (25 A +

2 3 4
+tXo X M—é'* Am] + 4—;' Amj' + ::2 Amp) (9.35)

2 3
S¢o=2‘Y¢eZﬂK%Amz & Amls"’%Am )
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2 3
+ (o) et + 22 oy

2
S..=21.2:M-§25Am?+—37m’)

2 3
+ g E B AP+ = Am

Sos = S0

&n &

So0 = oe*) S M- Al + == AP +

& 53

+Y9 X O~r+2m)(—2- Am? +

g} 3
+x,,};).,(—Am, +—4T-Am,‘

& 3&3

+%Xg X, WZN:)(— Am} +

&

2
See = 2% X Ui( 2 Amlz*"?Aml’)

2 3
“'":oZl'-t(E"Aml +£1Am0

4
+ am)
9.37)
(9.38)
3
St
3
g“ Aml‘)
y 5
+ '57 Am )
— Am+ i) = Am}) (9.39)
2 )
(9.40)

Using (5.33), (5.36) and (5.37), the composite mass density p, and the composite mass

moments p,z! and p,z? which appear in the equations of motion are also calculated for an ini-

tially spherical laminate

Po=X PorAm; + %‘ T PopAm/ 9.41)
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- 2 25-

pozl =1 > 50 ZPopAmi + == 3 PopAm; (942)
1 &

Po? = 3 & T PorpAmy’ + 2 T PopAmy’ (9.43)

9.4 Energy equations and constitutive relations of linear thermoelasticity for an initially
spherical composite

In the absence of heat supply or heat absorption, the energy equations (6.34), , reduce to
the following forms when written in spherical coordinates as defined by (9.1)

dqe
— ¢ [a (sin 9 qp) + =2 ]+?—(r2h)+p°(¢°no+¢m1) =0 9.44)
[-—(sm¢ .)+i]+h + Po(®N + M) =0 9.45)
rsm¢ P q = Qs + Po(@oN 119 S

where gy, gg and g, are the physical components of the heat flux vector for the composite lam-
inate; q,4 and qq are the physical components of the composite heat flux moment, and other
quantities have the same meaning as section 6. The constitutive relations for various composite
quantities in thermoelasticity can be written similar to what was done in section 8.4 for initially
cylindrical laminates. The mechanical parts of such constitutive equations were deived in sec-
tion 9.3. Therefore in what follows we record only the thermal parts of these equations. The
complete constitutive relations in linear thermoelasticity are obtained by adding these distinct
parts. Using (7.10), (9.8) and (9.20), the thermal part of the contravariant stress tensor t is

2i(thermal) = ¢, (T + %— T 4 AJTO%B 4 % 3238

0y (I 2 3@ A Yo 4 2 o) (9.46)
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¥ =001 4 2 g0 51 -0 a s 22y o

2= 4,002+ -3— ymiz ;22— JOR2) — 4,2 4 % JoR2 4 -:7 OB (9.48)

W0 = 4,005+ 2y _ g, g5 4 2y, ©.49)

where the word (thermal) is dropped for brevity. Similarly the thermal parts of the composite
couple stress are written by using (7.12), (9.8) and (9.20)

= Dap, 3 j2xB, 2 1018y _ g q@B . 3 jOWB, 2
Sap = —0,0¢ +rﬂ +r21<3 ) - ¢,(0? +rJ<3 +r21< ) (950

5% = 4,103+ 2 jas) _ g, g3 4 2 yom3) ©.51)

The constitutive relations for composite entropy and its moments 1), the heat flux vector q and
its moment q; are also derived by substituting from (9.8) and (9.20) in (7.17), (7.22) and (7.24)

.2 . o2 '
PoN(m) = 'Yij(](n)u + T ](“"H)U) + xlp(](ﬂﬁl)lﬂ + _r_ ](m+2)|ﬂ)

+ K™ + 2 gm0y 1 g, D1 2 g2y @=0,12) 9.52)

. P Y N Y o 2
q'=-LOP 4 = ]_‘(l)lli)%.p — LB 4 = L(Z)IB)%B -@LOB4 < ]_,(l)l3)¢1 9.53)
QP = -8 4 % L@aByg o - @0B _3_ LONByg, o - LD 4 % L@ (9.54)

where the thermal constitutive coefficients J®%, K® and L®¥ are given in (7.6)-(7.8) and also in
(7.30)-(7.32).

If the micro-structure is composed of isotropic spherical shells, the coefficients of thermal
stress and thermal conductivity of each layer can be represented in terms of only one constant.

BASE




9-15

Writing (8.59) and (8.60) in spherical coordinates and then substituting in (7.30) and (7.32) we
get the following results for the non-vanishing components of J®% and L)%,

oo - _E_:T m Z BpAm+! (9.55)
ooz 1 & BrAmE*! (9.56)
b ainig = PO '
k
Lo -IE-%T E, ) k(,,Am"” (9.58)
pon_ 1 _& ki (9.59)
k+1 rsin% Lot .
LO® = L EE T kpAm] ©.60)

Bwy's and ky)’s are the coefficients of thermal stress and thermal conductivity of cach layer and
the summations are all extended over the micro-structure from / = 1 to [ = n. Substituting from
(9.55)-(9.57) in (9.47)-(9.49) we get the following expressions for the thermal parts of the physi-

cal components of the composite stress tensor.

2
Too = -%ZB:(Amﬁ—:'riAm, +-—23%Am )
gn 3
X Bz(-z- Am}? + %"; Am} + -z—gl';— Am}) 9.61)
Toy =Ty =0 9.62)
T0=Te=0 (9.63)

BASE




9-16
To0 =9, zp,(Am,+&Am,2+_iAm,3)
° 2r 32
ME Am? + = Am} + 3 = AmY)= (9.64)
-¢12 2 2r m_z t“ ‘
‘[~=‘t&=0 (965)
& & 25.3

e =9, X BlAm; + — Am, -6 X Bl('- Am? + Am}) (9.66)

The thermal part of the composite stress moment is also similarly calculated by substituting from
(9.55)-(9.56) in (9.50) and (9.51).

3
See =9 l3z("g22 Am,2+-§rlAm, + %}Am )
2 3 4
4 X 51('51 Am} + ‘351 Amf + =3 Am}) 9.67)
S“ = S“ =0 (9°68)
S0 = Seq (9.69)
S,, = SQ‘ =0 (9.70)

In order to find the appropriate forms of the constitutive equations for the entropy and its
moments, heat flux and its moments we substitute from (9.55)-(9.57) and (9.58)-(9.60) and also
(7.31) in (9.52)-(9.54) and obtain the following results

PoN(0) = Yoo HYoet V) X, B(Am; + % Am?)

2&..’

+ (oae+%o0) T M% Amf + —= Am)
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b b 2%

+40 Z O)Am; + == Amf) + ¢, T (po)(- Am] + —= Amp)

2
PoN1) = (Yoe MYoe i) T ﬂ:(%‘* Am} + zg,, Am?)

2 3
+<'r¢.+'r«»>z:ﬂ;(i . Am.‘)

&

3
+9 L o) Am?+ == % gy mz(pc).(—-m’ =

5 Ami)

2 3
PoN2) = (Yoot Yoot Yer) Bl(in' Am} + E" Am})

3 4
"‘("n*"oo)ZBt(&Am: +§‘-—Am)

& &

+¢oZ(Pc)z(—Amz +—Amz‘)+¢1Z(P°)z(§°

Am.‘+—Am,’>

&

%=1 3o Tkibm+ = Am)

2
X k(Am 5" 2§"Am?)

¥ &g

|
"lln-‘

_ 1 3¢° & 2
Qo=- Teng 90 2k,(Am,+-r-Am,)

1 8¢, & 2§3
rsm¢ 0 Zk,(— +——Am)

q=-¢, 3 k(Am; + % Am?)

9.71)

(9.72)

(9.73)

(9.74)

(9.75)

(9.76)
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2
thr’"% :: Zkl(%'Amuz'*—&-Am?)
2 3
"7321‘:(5"-@: +£'-Am;‘)
2
Qi0=- ,S;W ':; = pf + 222 A
1 5.. &

34+

0.77)

(9.78)

It should be recalled that in the above relations, ¢, is the gradient of ¢, in the 6%, i.c., r-direction.
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10.0 ANALYSIS OF COMPOSITE LAMINATES FOR IN-PLANE LOADING
10.1 Introduction

In the previous sections a complete thermomechanical theory of composite laminates was
developed. In this section the results of stress acalysis of composite laminates with traction-free
edges are presented. Composite laminates with traction-free edges are known to develop inter-
laminar stress concentrations near the edge region. The problem of a finite width, symmetrically
laminated composite plate under uniform one-dimensional stretch has been studied by many
authors, see Section 1. Pagano and Pipes (1970, 1973) showed that free edge effects on the
interlaminar stresses are important issues in determining the failure and the strength of such lam-
inates. Their analytical work was based on linear elastic, generalized plane-strain formulation
and numerical solutions were obtained using a finite different procedure. Their study revealed
that certain interlaminar stresses rise in magnitude near the frec-edge region. It was suggested
that a possible stress singularity exists at the free edge. A. S. D. Wang (1977) followed a finite
element scheme to investigate the same problem with emphasis placed on assessing in detail the
stress field closest to the ply interfaces and laminate’s free edge, where stress singularity is
suspected. In this section the analysis of the same problem based on the theory developed in
previous sections is presented. A finite difference scheme was adopted for the solution of
governing partial differential equations. The objective of this numerical modeling study was to
examine the three-dimensional state of stress at the free edges of composite laminates and to

show that the proposed theory is in agreement with recorded experimental data.
10.2 Free Edge Boundary Value Problem

Consider a prismatic symmetric laminate shown in Figure 10.1.
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Fig. 10.1
The corresponding boundary-value problem for a uniform strain field in x-direction and
traction-free edges at y = xb, and top and bottom surfaces (z = th) were derived based on the
linearized field equations (2.126) and (2.127) and constitutive relations (3.24) and (3.31). It was
assumed that representative elements are made of orthotropic plies. The stress-strain relations of

each ply in a coordinate system with major axis along fiber direction is:

T =Cy (10.1)
where
* L * L ]
T1=T1 » Wa=Ty3
O_ . t_ ]
T2=T2 , 15=T3
#_ * ‘_ »
T3=T3 , T6=T

Y1=u;1 » Ya=Uy3+U32
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=42 ,» 5=u3+0y,

B=033 . Ye=UiatUy,

and C is a (6 x 6) matrix with elements related to the nine material constants of each ply, i.c.,
extensional elastic moduli in three directions, shear moduli and Poisson ratios in comresponding
directions as shown in [Whitney, 1989]. The constitutive relations for composite stress and
composite stress couple were derived by rotation of coordinate system in (10.1) to coincide with
the direction of axial loading and the integration of these relations across the thickness of the
representative element as shown in equation (3.24) and (3.31). For small deformations of flat
composites, the constraint relation (4.20) was employed, i.c.,

Ju(6°.6°)

8(6%6%n) = P

(10.2)

The final form of constitutive relations for the composite stress and the composite stress couple

assumed the following presentation:

t=Cy+Dx
(10.3)
S=Dy+Fx

where
C= mCm + (l-m)D(z)

D= % [m®Cyy, + (1-m?Cy)) (10.4)

2
F= gTz [mSC(l) + (l-ms)C(z)]

Ki=Up13 » Kg=U323

K2=Up23 » Ks=UU3;3
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X3=0 , Kg=u;3+0y;3
In (10.4), C;) and C ;) are corresponding C matrices for each constituent (or for each fiber direc-

tion) present in the representative element and §, is the thickness of representative element and
m is defined in (3.15). The lincarized field equations (2.126) and (2.127) for a static loading and

in the absence of body force are:
1% at o 3= 0
(10.5)
§% 4+ 0/~ %=0
Elimination of the interlaminar stress vector ¢ from these equations resulted in:
i -8% =0 (10.6)

For an axially loaded strip, the stress and stress couple components were taken to be independent
of the axial direction. Consequently the general form of the displacement field was assumed as:

u; = 0x; + U(Xz,X3)
W= V(Xz,X3) (10.7)

u3 = W(xy,x3)

Identifying direction 1 with x, direction 2 with y and direction 3 with z, the field equation (10.6)

reduces to the following set of partial differential equations:

CosU,yy + CssU 1, + CoV yy + CysV 1 + (Cos+Cys)W

+ (Dy5~D39W 7 — F&U.yyu —F36Vyy22 =0

CasUyy + CasUzz + CV yy + Co4V 5 + (Cp+Ci)W

+(Dy-Dp)W , — FoU, = FgeV 4 =0 (10.8)
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(CestCalU yz + (CotCV g + CoaW yy + CosW
+ D3-Dis)U yz + O55-DedV gz

—F“Wm=0

where C;;, D;; and F;; are the components of C, D and F matrices. The domain and the boundary

conditions for these equations are shown in Figure 10.2.
z IV
I—_ ‘ /_/—m

\—_ I
Figure 10.2
U,=0 U,=0
For: {V,=0 Forll: {W,=0
w=0 V=0
T = 0 0= 0
ForIll: {15,=0 ForIV: {5,=0
73 =0 o3=0

The following material properties were used for the analysis:
E, =48 x 10%psi
E,=E,=5x% 10%psi
Gyy = Gy, = Gy =2 x 10%psi

Viy = Vazy = Vg, =0.21
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A rectangular mesh of 41 x 11 nodes was used for the finite difference discretization and a four
layer symmetry laminate under a uniform axial strain v, = 0.01 was considered. Each layer itself
could be a collection of thin plies repeated in a consistent pattern. The presented results are for
the case that all plies in the top and bottom layers are in the +8 direction and all plies in the two
middle layers are in the -0 direction providing a [10), laminate. Complete stress and displace-
ment results were obtained for various values of 6. These results are presented in Figures 10.3

through 10.13 and summarized in the following.
10.3 Results of Finite Difference Simulation

The purpose of this simulation was to examine the response of composite laminates under
uniaxial extension and to show that the proposed theory reflects the complex three-dimensional
response of free edge problem in composite laminates as recorded in the literature. Following
this verification, a systematic discretization technique in the context 6f finite element method
was developed and extensive analyses simulating various flat and curved composite laminates

under in-plane and out-of-plane loading were performed.

In Figures 10.3 through 10.9 various components of stress tensor and interlaminar stress
vector for [+30] , [£45]; and [£60] ; laminates are plotted along the symmetry line of the lam-
inate. Figure 10.3 is the axial stress which shows a decrease at the free edge. For [+30] ; lay-up
this decrease is about 50% of stress at the centerline y = 0. Figure 10.4 is the composite shear

stress T,, which assumes its maximum for 8 = 30° and approaches zero at the free edge.

Figure 10.5 is the normal in-plane composite stress in the y direction, perpendicular to the
loading axis. The value of this stress component is negligible as compared to the axial stress,
about 0.3% of the axial stress.

Figure 10.6 shows the interlaminar normal stress in z direction. The value of this stress

component assumes its maximum on the free-edge boundary.
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Figures 10.7 and 10.8 are the interlaminar shear stress components. The magnitude of the
interlaminar shear stress along the x-direction is in the same order as normal interlaminar stress
and it increases with a high gradient as it approaches the free edge. The magnitude of the yz
component of shear stress at the centerline is negligible compared to other components.

Figure 10.10 shows the variation of interlaminal shear stress t,, for various values of fiber
direction 6.

Figures 10.11 through 10.13 present the various stress components across the thickness of
the laminate. The shear stress 1, shows very small variation across the thickness. The normal
interlaminar stress assumes its maximum along the symmetry line and it approaches zero on the
top and bottom surfaces of the laminate. The normal stress t,, assumes its pick on the top and
bottom layers. Its value at the symmetry surface is not zero but it is considerably smaller than

those values at top and bottom surfaces.

A more detailed study of this problem is presented in Chapter 14 based on a finite element
scheme. In particular it is discussed that even for a symmetric laminate, the problem of in-plane
loading of a finite width strip is a three-dimensional problem and should be modeled accord-
ingly.
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Composite Axial Stress (xx Component)
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Figure 10.3
Extension Analysis — Axial Stress (T,,)

Composite Shear Stress (xy Component)

Stress (psi)

—— 30 Degrees 45 Degrees ----- 60 Degrees

Figure 10.4
Extension Analysis — Shear Stress (1)
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Composite Normal Stress (yy Component)

25
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Figure 10.5
Extension Analysis — Normal Stress ()

interlaminar Normal Stress Z Direction
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yb

~—— 30 Degrees - 45 Degrees ----- 60 Degrees

Figure 10.6
Extension Analysis — Interlaminar Normal Stress (03)
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Interlaminar Shear Stress xz Component
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Figure 10.7
Extension Analysis — Interlaminar Shear (o,)

interlaminar Shear Stress yz Component
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Figure 10.8
Extension Analysis — Interlaminar Shear (0,)
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Axial Displacement at Composite Surface
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0
+0.0002-
-0.00041
-0.00086-
-0.0008+
-0.0014
-0.0012
-0.0014+
-0.0016-
008 02 003 04 OB 06 07 08 09 1
yb
—— 30 Degrees 45 Degrees ----- 60 Degrees
Figure 10.9
Extension Analysis — U(y,2)
Interlaminar Shear Stress Vs Theta
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Figure 10.10
Effect of Fiber Orientation
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Composite Shear Stress (xy Component)
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Figure 10.11

Variation through-the-thickness (‘t,y)

Composite Normal Stress (yy Component)

20
15-
S
E 104 '/" "
2 '-.
3 5 |
0=
-5 — - v - v — —— v
0 ot 02 03 04 05 06 07 o088 09 1
y/
— Symmetry Surface - Mid Surface @ ----- Top Surface
Figure 10.12

Variation through-the-thickness (tyy)
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Composite Normal Stress (zz Component)
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yh

1
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Figure 10.13
Variation through-the-thickness (%,,)
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11.0 WAVE MOTIONS IN LAMINATED FLAT COMPOSITES

Using relations (5.38)-(5.42), the linear equations of motion for a laminated composite with
initially flat plies, in the absence of body forces, can be written as

I s + Ibur g3 + 033 = Pt + Poz'il 3 (11.1)
I3 iy + 13000 + 0 = iy s~ Ky g = poz"ily + potily 3 (11.2)

Eliminating ©; between these equations we get

LS s + Lkbus ips — 1005 s = Kt apas = ol = P33 (11.3)
The equations (11.3) are the differential equations for the displacement vector u in elasto-
dynamical problems. These equations are now used to investigate the propagation of small

amplitude harmonic waves in a laminated composte. In the following special cases that we
examine, k is the wave number and ¢ the phase velocity of the appropriate wave

(a) Longitudinal Waves in the x,-direction
For waves of this type the non-zero displacement component is u; and we have

u; = A; explik(x;—ct)] (11.4)

where A, is the constant wave amplitude and assumed to be small. Differentiating (11.4) with

respect to x; and t we get

iil =—kzczu1 » Uy ="'kzul (11.5)

Substituting (11.5) in (11.3) we obtain

!

11.6
Po (116

For a composite whose micro-structure is composed of n isotropic layers, by (5.27) and (5.26),
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1%, = f:; Oy + 2 pAm, L7

Substituting this result together with (5.38) in (11.6), the wave speed c for a longitudinal
wave would be

Z (Agy+21)Am,
==l — (11.8)
2‘; pPAm,

(b) Horizontally polarized shear waves in the x,-direction

For this type of waves the non-zero displacement component is u; and we have

uy = A explik(x;—ct] (11.9)

Substituting from (11.9) in (11.3) we get the following expression for the wave velocity

o 1B

(11.10)
Po

which for the special case of isotropic laminates reduces to

3 pAm,
62— r=1

= —n——(—)-— (11.11)
5 Po Am,

(c) Vertically polarized shear waves in the x,-direction

The non-zero displacement component for this wave is u; and we have
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U3 = Ag explik(x;~ct)] (11.12)

The wave velocity for this case, similar to the above cases, is found and we obtain

2= —22 (11.13)
Again for the special case of isotropic laminates we get
n
2 HpAm,
=1

=

e —— 11.14
 pam e
=1

(d) Longitudinal waves in the x,-direction

In this case the non-zero displacement component is u; and we have

u3 = B; explik(x;—ct)] (11.15)

These waves, unlike the above three cases, are dispersive and the wave speed depends on fre-

quency. The non-zero space and time derivatives of (11.13) which are relevant to (11.3) are

Uy = ‘k7°1“3 » U333 = ’k7“3 ’ 63,33 = k4¢2ll3 (11.16)

Substituting from (11.16) in (11.3) we get

I3 = pc? + po2ic?k? (11.17)
If we introduce the wave frequency ® = ck in (11.17) we get

_ 02 = Igg?i?—Pozzmz

11.18
Po ( )

For the case of a composite whose micro-structure is composed of n isotropic layers, this rela-

tion reduces to
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( a
$ a2 § poam?
==l . = (11.19)
}:1 p&PAm,

(c) Transverse shear waves in the x3-direction

In this case we consider a transverse shear wave propagating normal to the laminates with
its amplitude in the x,-direction. Consequently the only non-zero displacement component will

be u; and we have

u; = Byexplik(xs~ct)] (11.20)

Here again, the phase velocity ¢ is obtained similar to the case (d). The result is

()
a=l‘_3}31:ﬁ (11.21)

which shows the dependence of ¢ on frequency . For the case of isotropic laminates (11.21)

can be written as

2
ZP(r)Am:- (wf,..) (I)Am?
2= o "‘ (11.22)
2 Po

It should be noted that the phase velocity of a shear wave propagadng in the x3-direction with
amplitude in the x,-direction can be obtained by substituting 13}, in place of I{3}3 in the relation
(11.21). The general solution of a transverse shear wave propagating normal to the laminates is

the sum of these solutions.
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12.0 WAVE MOTIONS IN CYLINDRICAL AND SPHERICAL LAMINATES

The results of sections 8 and 9 are used to derive equations of motion in terms of displace-
ment vector u for the cylindrical and spherical laminates. In each of the two cases the micro-
structure is supposed to consist of n isotropic layers with different elastic constants. Using the
same notations as previous sections we define the constitutive coefficients A® and u® according

to the following relations:

A0 =1 Y A Am] (12.1)
r=12,.)

uO =M ¥ pAmf (12.2)
where summations extend over the micro-structure from / = 1 to I = n. For future reference we

further introduce the quantities p® related to the densities of different layers according to the

following relations

pI =LY popAmf (r=12,.) (12.3)

where summation again extends over the micro-structure from / = 1 to / = n. The quantities

A®: 1@ and p& defined in (12.1)-(12.3) are known a priori for each composite laminate.
12.1 Governing Equations for Cylindrical Laminates

Using the results of section 8, the equations of motion are derived for axial symmetry. In
other words we will study motions which are independent of the axial coordinate z and the angu-
lar coordinate 6. With these specifications we will not have variations in 8! = 6 and 63 = z direc-
tions. From relations (8.12) and (8.13) we calculate the physical components of the relative

kinematic measures:
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Xz=0 , mz_%% » Xp=0

The equation of motion in terms of the physical components of the composite stress tensor and
the composite stress couple are derived using relations (8.15) and (8.16). These equations are

written in the absence of body force and body couple.

Lo o 1% o oo
T Yot T = =Polilg +2°3)

z

= po(il, + zlsz)

" e
¥| &

1 1 90 T
- Teet T 5 =Palil +2'5)
(12.5)
< S+ T Gp= 1= Pl + 228y)

1
r

0, ~ T, = Pz, + 225,)

Lo Lot )

The constitutive relations for various components of the composite stress tensor and the compo-
site stress couple are derived using relations (8.29)-(8.43) along with definitions (12.1) and
(12.2)

te0= (AD + 21D+ -:- AP+ 21D+ 3%2 AP +2u%) )y
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w12, 1 90
+(A +tl +3r2;' Ve

+ (-;— AP +u® + -52; 0P+ 2 + ﬁ 9+ 249 xceq

9= 2<u“’+—u"’+ rei 1Py +(— u® +

2.® “
ol R"))"'“

—am, 1. l.o,.10
T2 = W0+ = AP+ %00) + (5 AP + - A

1
T =20+ > KON,

1 1 1
o =20 + L™ 1Oy o + Y u@+ ™ Ty

1
T =240 + o uPy,

1 !

m, 1.2 l,o,1,6
+ OO+ - Ay + (5 +3rl N¥eo

0= (50242 + 200+ 2O+ —5 A0+ 24 )yp

+(= D 5 7L‘3) +—2@
( 412 )Yn

+ { _. (XO) + zu(3)) + — (X(‘) + 2u(4)) + —

r2 A9 + 24 xgq

(12.6)

(12.7)

(12.8)

(12.9)

(12.10)

(12.11)

(12.12)

(12.13)
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Sor = 2(-— @4 -3— 1Yy + (— D+ 1 (12.14)
Sz = (— A® 4 — = A0 + 1) + (— A9+~ 1“’)@9 (12.15)
=23 KD+ Oy, (12.16)

=T =S9=5g, =0 (12.17)

It should be mentioned that with the constitutive relations (12.6)-(12.17), the equations (8.17) for

balance of the angular momentum are identically satisfied.

The composite mass density p, and the composite mass moments p‘,z1 and p‘,z2 are calcu-

lated using relations (8.44)-(8.46) together with the definitions (12.3)
po=pM+ L p(z)

Lo (12.18)

1
pozl = -2- péz) 31,

1 1
Pz’ = 3 O+ ar $9
As for the physical components of the director vector 8, using (4.22) in conjunction with (8.1),
(8.2), (8.5) and (8.7) we find the following results

dug du, _ oy
=5 %= &=y (1219

In order to substitute the constitutive relations (12.6)-(12.17) in the equations of motion, first we
eliminate the interlaminar stress components Gy, G, and o, from the set of six equations (12.5).

The result would be the following set of three equations of motion. In these equations, as previ-
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ous similar equations, double dot denotes second partial derivative with respect to time t.

3 1 10 _
3 ot T (et te) - < 2=
az
= (o) - __ @, 1 ey &
{ps 3r ( Po + o= )ar,lue
Do+l —pw-d (3)_?._( pm+ (4>)-93-}u, (12.20)
or r ° "3 or?

3. .1 19
3 Tt T (o= tee) + 3 S0

1 2 1 1 9 ..
= {p"- o p&d >~ G P&+ y P 32

In deriving these equations we have also used the results (12.18) and (12.19). Now the relevant
constitutive relations are substituted in equations (12.20). After straightforward calculations and

some simplifications we get the following results for the left-hand sides of these equations:

9 1 _10 m, 1 e
3 et (Txe*"‘or) ars"' 2( " +2r211 Mo
#2004 @) 22 a"" +HHP+ 5 ug+ (3 D4 - wh—=- X,
2r r2 3r
;’,w-zn 20:“’+— u@) = aY" -:; Ky, (12.21)

9. .1 _ l_a_ lom_loo_l,e__1 0
artn"*'r(tn 199)+rar r(2ll A’ !'zl zél)Yn

+ l(1)+2 (1)+._ 1(2).*. 2 + — 1(3).., 1(4) —_—
{ H ( H) 32 ) }

1 1 1
- = 2uM 4 — AP +2u@) 4 3 OB +2u) 4 _21? 0D + 20D )yeq
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+ 3 09420
L o
spW-Lo@d _Loa, 1 w3
(ps” =3 Po" 5= (5P + °))3r2)u' (12.24)

It is interesting to note that these equations are uncoupled in terms of the displacement com-
ponents and represent three types of transient wave motions with axial symmetry. Equation
(12.22) is the governing equation for rotary shear motions. Equation (12.23) represents axial
shear waves, and finally equation (12.24) is the dynamical equation for radial waves. Since the
present theory is designed in such a way that the classical theory for a homogeneous continuum
can be derived through a limiting procedure in which the thickness of the micro-structure
approaches zero, we expect to reconstruct the equations for wave motions with axial symmetry
in a homogeneous isotropic medium by letting &, -> 0 in equations (12.22)-(12.24). Doing so,
the only non-vanishing constants in the coefficients of these equations are those with superscript

(1) and we obtain the following results.

Rotary shear waves:

F PR ke e vy (1229
Axial shear waves:
92 ) A
bz 1% _1 9% (12.26)
o r o o} o
Radial waves:
d
ﬁ+_1.i“'__.“.£=iz.az_“‘. (12.27)
8r2 T af r2 L 3(2
where
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204+ Lm0y, 2 00,200, L 0@, 2,0 3

+0+ 004D+ 5 0P+ 2+ S +24) =0

L 2 0040084 3004209y 4 209 4 21 )i
r £ 4 5P

Finally we substitute for the relative kinematic measures from (12.4) and obtain the following

equations for the components of the displacement vector u:

=pW-Lo®l L oo, ¢ 2.
{ps 3: > (G P+ obar,)uo (12.22)

My —
G+

1@ P, +10 9u,
r or
- Lo Ll o, 1 @
[po 31' po (3 [ + 41, po )) arz ]ul (12‘23)
(AW 4 2u“’+ L 5A® 4 24y 4 2 37 AP +u®) + — 13 (3A@ + 4u@)
1 du,
b —_— 1(5)4. 6] —_—
7 A0+ ") =

1 amao®_ Laor_ Lad, @y _ 2 a6, oG %
+ 0D+ 24D - 520 S0+ u®) - 2 4O+ 24

-1l amyn <1>+—(3x<2>+4 @) 4 == OO + 24Py + = AW 4+ 2u@
3 p p@) rz( ) 213(1 p)
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CE:&.Z.E , c.%.—...P'_ (12.28)
po po

and we have deleted the superscript (1) for simplicity. These are the familiar equations for wave
motions with axial symmetry in cylindrical coordinates. Equations (12.25) and (12.27) are of
the same type and the space part of their solutions can be represented in terms of Hankel func-
tions of the first order. The space part of the general solution of equation (12.26) can be written
in terms of Hankel function of zero order. For each case considering a solution of the general

form F(r)ei* we get the following results:

ug(r.t) = (C,H{”(é"r- n+CHP (—(‘:"T- )i (12.29)
u,r)= (c3H,§1>(E"’T- N+ CH® (é"r— 1))ei™ (12.30)
u ) = [csnf"(-gr- 1+ CHP (é"r- n)ei™ (12.31)

where H{V and H® (n = 0,1) are Hankel functions of first and second kind.

12.2 Investigating Wave Motions in Cylindrical Laminates

Returning back to the equations (12.22)-(12.24) we can again use the technique of separa-
tion of variables to get the appropriate differential equations for the spatial part of the wave

motions.

For the rotary shear motions if we let

ug(r,t) = F(r)e'™ (12.32)

in the equation (12.22) we will obtain the following second order ordinary differential equation
for F(r)
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m_1 2o 1 2@__1  op
UV~ 3 o?pd - - wlp 72 HOF® (12.33)

1691 @+ L PP+ @ - 5 WG =0

This equation can be written in the following form:

@ w?pP-ud
Fo+—EH pry+—2— " Fr)=0 12.34
® tprey ® PaPry 0y ( )
where
oo @
a=p- 1P | p=- 2 | y=- 14 (1235)

The origin r = 0 is an ordinary point for this differential equation; therefore, the solution for F(r)
is the neighborhood of r = 0 can be written in the form of an infinite power series of r. The
radius of convergence of this series depends on the frequency ® of the wave motion and is
approximately equal to (Iy!/0)'? for small frequencies. At the critical high frequency
0, = GrWp )2, o= 0 and the equation (12.33) can be written as

3uTpg)
P 3)

[}

3 W
@Te ™3 HOOF" () - WPF (1) - ( P-uDF®=0  (1236)

Substituting F(r) = i a,r" in this equation, the coefficients a, can be calculated. This is a con-
=0

vergent seires and its radius of convergence is given below:

B (3)
4 WPo
R= ry u“’p § ) (12.37)
For the axial shear waves if we substitute
u,(r.t) = G(r)el™ (12.38)
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in the equation (12.23) we will get the following differential equation for G(r)

uo_ & (& ool
G @ + 3 G+ Po G)=0
u® - _;_ o?p Py ~ _‘1T w?p® m(l)_ 1 w1 mzp«)

(12.39)
The origin r = 0 is again an ordinary point for this differential equation and its solution in the

neighborhood of r = 0 can be written in the form of G(r) = i a,r". At the critical high fre-
=0

quency 0 = (3uV/p{)!2 the equation (12.39) adopts the simpler form

apV

G"(l') -
pS (4)

rG@)=0 (12.40)

This is the Airy differential equation and its solution can be represented in terms of the Airy
functions of the first and second kind

QD 22
p(4) p(4)

G(r) = A2

(1241)

Due to our initial assumption that the thickness of the micro-structure is very small and also by

definition (12.3) we conclude that the coefficient of r in the arguments of the Airy functions

Ul
(12.41),ie.,2 V Po @ » is a large number. Therefore, we can employ the following asymptotic

representations for the Airy functions
2
-1 e 3@
Aj(on) = ar)" e
i(ar) Py (o)
(12.42)

—( w

By(ox) = T () e?
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For the radial waves we have the more involved equation (12.24) and if we let

u,(r,t) = H(r)el™ (12.43)

we will obtain the following differential equation for H(r)

)

oy Qs Oy ” 52 B3 B4 ¢
(%"'T""r'{""r-,— ':;)H()"' (o ?'l'?-'*?')ﬂ(l’)
+ ? (0?p i - 3 m’p 3~ (o, + 1‘- + ;’; :,’ ;’:))H(r) 0 (12.44)

where
1
30,0 1,.2,@
= % 2.9 4 u®) (12.45)
=310,,@
B=7 +H

l

o=-A® , By=-(D+pu®)
(12.46)

Be=~ %‘ A® +2u0) = ~20,

"= 3%‘2) + 4}1(2)

11
y=1L 4%+ 24
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(12.49)
B= % 09 +2u)
=4 09+ 24 =40,
Equation (12.44) can be written in the following form
H'()+ 1 pOH(O) - 5 q0HE =0 (1248)
where
p(r) =f@/h@) , q@)=grV/h() (12.49)
are rational functions of r and
£(r) = B4 + Bsr + B, + a1
EO =Y+ Hr+ B+ + (o + % ?p Ot - w?p b (12.50)

h(r) = 0 + 05T + 02 + oy + o r
Unlike the two previous cases the origin r = 0 is not an ordinary point for the differential equa-

tion of the radial waves, but it is instead a regular singular point. However, since the indicial

equation atr =0 is

£ + (p(0)>-1)r - g(0) = 0 (12.51)
and by (12.49), (12.50), (12.46); and (12.47),; p(0) = -2 and q(0) = 4 we always have an analyti-
cal solution at r = 0. The other independent solution has a singularity at the origin and can be
found by the familiar techniques of series solution. The nature of the general solution at origin,

as far as the analyticity and singularity of the solution is concerned, is independent of the fre-

quency of the radial waves.
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12.3 Governing Equations for Spherical Laminates

In this section we use the results of section 9 to derive the differential equation of wave
motions with polar symmetry. With such an assumption the relevant field variables depend on r
and t only. Consequently, we do not have variations in ' = ¢ and 62 = 0 directions and the only
non-vanishing component of the displacement vector u is u, which we will denote from now on
by u. The physical components of the relative kinematic measures are calculated from (9.13)
and (9.15) and the results are recorded below

du
‘YM:‘YOO:% N Yn=¥
(12.52)
Yoo = Yor = Yor =0
1 0
Koo = ¥ea = 7 3 (V)
(12.53)

%00 Xop = Ky = K0 =0
The constitutive relations for various components of the composite stress tensor and the compo-
site stress couple are derived using relations (9.26)-(9.40) together with definitions (12.1) and
(12.2). We also substitute in these constitutive relations the results (12.52) and (12.53) for the

relative kinematic measures. After some simplifications we have
to = (20040 + £ 024@) + 10 a0 L L a@@) 8
"= u®) + — sy +—3_r-2_( L )+;;O~ H)) =

Myl 5,@,,0, 2 4,50,,00, 1 0@, @y ot
*”‘*r(z’”"))",z‘s"*“’*po‘*“”ar (12.54)

Too = (2004 D) + % D4 4 ?1?_2_ A4 + é. SIMON %
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MWyl 52,00, 2 (4,0,,00, L a@,,@n U
+ (A +r(2}. +p’)+r2(3l+u)+r3a +;.1’))ar (12.55)
w= G a0 L 25\

Wyl (392, 9,00, 2 2690
+ (A% +2u +r(2). +2u )+3‘21 }ar (12.56)

t$=1t=10¢=19:=“n=t!0=0 (12.57)
— (2@ + 8 00,00+ 2 @00, 2 A6L,6N L
so0= AP+ = AN + 5 A0+ 5 AU 7

1o, 1 0,000, L @ eu@n . 2 a0, 6y 98
+{21 *3 2842 )+4r2 (TAD+6u@) + 513(1 +H1))) = (12.58)

— @@ 8 0L, 2 A@L @y, 2 A6, OB
seo = {(A@+1 +3r0~+u’)+120~+u)+5r,(1 +u’)}r

1.1 30,0000 1 L 1@ eu@h 4 2 26),,6y) 98
+{21 3 GAP+2u®) + 2 A D+6u@) + p AP - (12.59)

500 = Sep = Sgr = Sor = 0 (12.60)
The equations for balance of lincar momentum and director momentum are written in terms of
the relevant components of the composite stress tensor and the composite stress couple by using

relations (9.17) and (9.18). In the absence of body force and body couple and recalling the
assumption stated at the beginning of section 12.1 for polar symmetry we have

2
—i(‘w“eeﬂrz o ;":o (12.61)
1 9%
9% _o 12.62
Zeing o (1262
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-1 _1 9 . adi
f(t“ﬂ“)+12sin¢ > Polu+z al_) (12.63)
cotd 1 =
—= (s s°°)+|2sin¢°‘ 0 (12.64)
l _ 6,=0 (12.65)
 sin ¢
J3e, 1 ot =p i+l
T+r2sin¢°' 1, = p,(z'i + 22 =) (12.66)

In writing down these equations we have also taken notice of the fact that the only non-vanishing
component of the director vector is 8; = §, = -g% The equations (9.19) for balance of moment

of momentum are identically satisfied due to the constitutive relations (12.57) «nd (12.60). We

also notice from (12.54), (12.55), (12.58) and (12.59) that

Too=T00 » Sep = Se0 (12.67)

Using these results together with the equations of motion (12.61), (12.62), (12.64) and (12.65),

we conclude that the first two components of interlaminar stress vector are zero, namely

Cpy=0g=0 (12.68)

So we have only one equation of motion which should be derived by climinating o, between
equations (12.63) and (12.66). In order to write down this equation, first we derive appropriate
expressions for the composite mass density p,, and the composite mass moments p,z' and p,z

by using relations (9.41)-(9.43) and (12.3). The results are as follows:
1
Po=ps"+ — ps?

1 2
poz' == pP + 1= p§’ (12.69)
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Y z2._.._ )+___p(4)

o0,
Next we differentiate (12.66) with respect to r and substitute for "aTt in (12.63) while making

use of (12.69). The resulting equation of motion in terms of the composite stress tensor and the

composite stress couple components are as follows:

(4>) i

(2.0 i X o)
(3 P& o’) ( ps +2rpo

(12.70)

Now we substitute the constitutive relations (12.55), (12.56) and (12.59) in the equation of
motion (12.70) to derive the displacement equation. After simplification we get the following

result
A0 4 2 0@y 4 L ;00000 4 L m@i6u@) 4 2 0O 41O Pl
r 3 ar st

+ 2005y L@ _2 o, 2 oL mayg¢
(2AD2u M) + - 7@ TEN-50 +6p“)

_ 2 a6 1 du
sﬁ(l +H1)} -

- 2042, ) 4 -f- AP 4 ;%_2- G1A®428u®) + % AO+u®)

6 u
+-0 00,60 8
r4( +H1™)) 2

=00~ 2 pMii- (X pP+ 5 o L

3r? 2r2

L, p®
(5 Po )alz (12.71)
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Again, as in the case of the cylindrical laminates, we expect to recover the classical theory of
wave motions with polar symmetry through a limiting procedure in which the thickness of the
micro-structure, £, approaches zero. Recalling (12.1)-(12.3) and suppressing the superscript (1)
at the limit, the equation (12.71) reduces to the following form:

gu,2du_2u__1Ju 12.72
2 Ta 2 (12.72)

where
C2= "—;-2-“- (12.73)

This is the familar displacement equation of motion for waves with polar symmetry. In order to
find the general solution of this equation it is convenient to express the radial displacement u(r,t)
in terms of a potential function ¢(r,t) through the relation

u= %— (12.74)

Now the second derivaqgive of the product r¢ with respect tor is

& P . ,30_ du
arz(np)rar2+2 2

If we rearrange the above result and differentiate again with respect tor, we get

which reduces by (12.72) to

al 1 du_ 1 9 ,3%
w“”qw’qu

)

Therefore, we conclude that if the product r¢ satisfies the following one-dimensional wave
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equation
-3;2,- == {:;2,- () (12.75)
L

then u(r,t) as defined by (12.74) will satisfy the displacement equation (12.72).

The general solution of (12.75) is

o) = % £(-1/C) + -:- g+/CL) (1276)

where all the two terms represent waves diverging from the origin r = 0 and converging tor = 0,
respectively.

The displacement equation (12.71) for waves with polar symmetry in spherical laminates

can be investigated by substituting a separated solution of the form

u(r,t) = F(r)e'™* 12.77)

The differential equation for the spatial part of the solution, F(r), can be written in the following

form

1
2

where the rational functions P(r) and Q(r) are given by

@+ % POF() + - Q@)F@) =0 (12.78)

P@) =N,/D() , Qr)=N,y1)/D(r) (12.79)

and N, (1), N,(r) and D(r) are the following polynomials

N,(r) = 2u,,r4 + 5113 + 521'2 = U3 — Oy

Ny(n) = a?p {8 — o’ — 4oy - 1r? — Yar — 30y (12.80)
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where

D(r) = ar® + oy + 0, + ouT + 0

o, =AW 4 2uM - _;. 0?p®

Q' =2(0y + % o’p)

1
a,= 20 + p.m) -3 0’2P 54)

o= — (A® + 2u®)

W |-

o= (7A'(4) + 6u(4))

PN

0= -ﬁ- AP + )
~l.o_1 2@
ﬁ 1 2 l 2 mzpo
B, =-20 + % u®)
Y= % G1A® + 28y

% =604 +u®)

point irrespective of the material constants is
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2-2r-3=0

(12.81)

The origin r = 0 is a regular singular point for the equation (12.78). The indicial equation at this

(12.82)

It is obvious from (12.82) that we have always an analytical solution at r = 0 and the other
independent solution has a simple pole at this point. By (12.81), the radius of convergence of
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v
the series solution depends on the frequency of the wave motion.




